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Supplementary Note 1: Equations of motion

Based on the discrete model introduced in the main text, the Hamiltonian of a 2D rotating-squares system can
be written as

H =
1

2

∑
n,m

(
Mu̇2

n,m +Mv̇2n,m + Jθ̇2n,m

)
+

∑
n,m

[
VMorse(∆θn−1,m) + VMorse(∆θn,m−1)

]
+

1

2
Kθ

∑
n,m

[
(θn,m + θn−1,m + 2θ0 − 2θLin)

2
+ (θn,m + θn,m−1 + 2θ0 − 2θLin)

2
]

+
1

2
Kl

∑
n,m

[
un,m − un−1,m − L cos(θn,m + θ0)− L cos(θn−1,m + θ0) + 2L cos θ0

]2
+

1

2
Kl

∑
n,m

[
vn,m − vn,m−1 − L cos(θn,m + θ0)− L cos(θn,m−1 + θ0) + 2L cos θ0

]2
+

1

2
Ks

∑
n,m

[
un,m − un,m−1 − (−1)n+mL sin(θn,m + θ0)− (−1)n+m−1L sin(θn,m−1 + θ0)

]2
+

1

2
Ks

∑
n,m

[
vn,m − vn−1,m + (−1)n+mL sin(θn,m + θ0) + (−1)n+m−1L sin(θn−1,m + θ0)

]2
,

(1)

where ∆θn±1,m±1 = θn,m+θn±1,m±1+2(θ0−θLin) and L = a
2 cos θ0

is half of the diagonal length of the square.
Then, Hamilton’s equations read

Mün,m = − ∂H

∂un,m
, (2)

Mv̈n,m = − ∂H

∂vn,m
, (3)

Jθ̈n,m = − ∂H

∂θn,m
. (4)

Substituting Eq. 1 in Eq. 4, the equations of motion (EOMs) for the square at site (n,m) can be derived as

M
∂2un,m

∂t2
= Kl (un−1,m + un+1,m − 2un,m) +Ks(un,m−1 + un,m+1 − 2un,m)

+Kl
a

2 cos θ0

[
cos(θn−1,m + θ0)− cos(θn+1,m + θ0)

]
+ (−1)n+mKs

a

2 cos θ0

[
sin(θn,m+1 + θ0)− sin(θn,m−1 + θ0)

]
,

(5)
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M
∂2vn,m
∂t2

= Ks(vn−1,m + vn+1,m − 2vn,m) +Kl(vn,m−1 + vn,m+1 − 2vn,m)

+Kl
a

2 cos θ0

[
cos(θn,m−1 + θ0)− cos(θn,m+1 + θ0)

]
+ (−1)n+mKs

a

2 cos θ0

[
− sin(θn+1,m + θ0) + sin(θn−1,m + θ0)

]
,

(6)

J
∂2θn,m
∂t2

= −Kθ(θn−1,m + θn+1,m + θn,m+1 + θn,m−1 + 4θn,m + 8θ0 − 8θLin)

−Kl
a

2 cos θ0
sin(θn,m + θ0) (un+1,m + vn,m+1 − un−1,m − vn,m−1)

−Kl
a2

4 cos2 θ0
sin(θn,m + θ0)

[
− cos(θn+1,m + θ0)− cos(θn−1,m + θ0)

− cos(θn,m+1 + θ0)− cos(θn,m−1 + θ0)− 4 cos(θn,m + θ0) + 8 cos θ0

]
+ (−1)n+mKs

a

2 cos θ0
cos(θn,m + θ0) (un,m+1 − un,m−1 + vn−1,m − vn+1,m)

+Ks
a2

4 cos2 θ0
cos(θn,m + θ0)

[
sin(θn+1,m + θ0) + sin(θn,m+1 + θ0)

− 4 sin(θn,m + θ0) + sin(θn−1,m + θ0) + sin(θn,m−1 + θ0)
]

− TMorse(∆θn+1,m)− TMorse(∆θn−1,m)− TMorse(∆θn,m+1)− TMorse(∆θn,m−1),

(7)

where

TMorse(∆θ) = 2αA
[
e2α(∆θ+2θ0−2θMorse) − eα(∆θ+2θ0−2θMorse)

]
− 2αA

[
e−2α(∆θ+2θ0+2θMorse) − e−α(∆θ+2θ0+2θMorse)

]
,

(8)

Note, we define the positive direction of rotation with alternating sign for neighboring squares.
By introducing K1 = Ks/Kl, K2 = kθ/(Kla

2), T = t
√
Kl/M , β = a

√
M/J , Ā = A/(Kla

2), U = u/a,
V = v/a, we can obtain the following dimensionless EOMs

∂2Un,m

∂T 2
= (Un−1,m + Un+1,m − 2Un,m) +K1(Un,m−1 + Un,m+1 − 2Un,m)

+
1

2 cos θ0

[
cos(θn−1,m + θ0)− cos(θn+1,m + θ0)

]
+ (−1)n+m K1

2 cos θ0

[
sin(θn,m+1 + θ0)− sin(θn,m−1 + θ0)

]
,

(9)

∂2Vn,m

∂T 2
= K1(Vn−1,m + Vn+1,m − 2Vn,m) + (Vn,m−1 + Vn,m+1 − 2Vn,m)

+
1

2 cos θ0

[
cos(θn,m−1 + θ0)− cos(θn,m+1 + θ0)

]
+ (−1)n+m K1

2 cos θ0

[
− sin(θn+1,m + θ0) + sin(θn−1,m + θ0)

]
,

(10)
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1

β2

∂2θn,m
∂T 2

= −K2(θn−1,m + θn+1,m + θn,m+1 + θn,m−1 + 4θn,m + 8θ0 − 8θLin)

− sin(θn,m + θ0)

4 cos2 θ0

[
2 cos θ0(Un+1,m + Vn,m+1 − Un−1,m − Vn,m−1)

− cos(θn+1,m + θ0)− cos(θn−1,m + θ0)− cos(θn,m+1 + θ0)

− cos(θn,m−1 + θ0)− 4 cos(θn,m + θ0) + 8 cos θ0

]
+

(−1)n+mK1

4 cos2 θ0
cos(θn,m + θ0)

[
2 cos θ0(Un,m+1 − Un,m−1 + Vn−1,m − Vn+1,m)

]
+

K1

4 cos2 θ0
cos(θn,m + θ0)

[
sin(θn+1,m + θ0) + sin(θn,m+1 + θ0)

− 4 sin(θn,m + θ0) + sin(θn−1,m + θ0) + sin(θn,m−1 + θ0)
]

− T̄Morse(∆θn+1,m)− T̄Morse(∆θn−1,m)− T̄Morse(∆θn,m+1)− T̄Morse(∆θn,m−1),

(11)

where T̄Morse = TMorse/(Kla
2). The dimensionless EOMs of the system can be obtained by considering Eqs. 9-

11 for all squares. Then, full-scale simulations can be conducted by numerically solving the system’s EOMs using
the fourth order Runge-Kutta method (via the Matlab function ode45). Based on preliminary numerical results,
we observe that, after a transition wave is initiated, squares in the new phase can undergo large oscillations due
to the energy release from the initial Phase C to the new Phase R. To account for the disspision observed in the
experiments, we include damping in the simulations by introducing the following simple viscous damping terms
in the EOMs: cu = λu

∂U
∂T , cv = λv

∂V
∂T , and cθ = λθ

∂θ
∂T , in which λu and λv are damping coefficients for

translational motion in the x and y directions, respectively, and λθ is the damping coefficient for rotational motion.
For simulations of the nucleation via quasitatic loading, λu = λv = 4.824×10−4 and λθ = 0.173. For simulations
of the nucleation via collisions of soliton-like pulses, λu = λv = 1.508 × 10−4 and λθ = 0.057. Damping is
added only after the new phase is formed in the simulations.

Supplementary Note 2: Continuum model

Previous studies [1,2] have shown that analytical solutions of solitons are available in similar but monostable
systems of squares without magnets. We expect that soliton can propagate in our system as long as it stays within
the energy well around the initial equilibrium θ0. To derive analytical solutions for solitons, we approximate the
total normalized torsional potential, including both elastic torsional potential and Morse potential, by a forth order
polynomial:

Vt ≈ C0 +
C2

2
∆θ2 +

C3

3
∆θ3 +

C4

4
∆θ4, (12)

in which the linear torsional potential is incorporated in the second-order term.
Following the procedures presented in [2], we introduce three continuous functions U(X,Y, T ), V (X,Y, T )

and θ(X,Y, T ), which interpolate the discrete variables Un,m, Vn,m and θn,m as

U (X = n, Y = m, T ) = Un,m,

V (X = n, Y = m, T ) = Vn,m,

θ (X = n, Y = m, T ) = θn,m,

(13)

Assuming that the width of the propagating wave is much larger than the unit cell, the displacements U and V and
the rotation θ of the [n, m− 1]-th, [n, m+ 1]-th, [n− 1, m]-th, and [n+ 1, m]-th units can then be expressed
using Taylor expansion as

Fn±1,m ≈ F |n,m ± ∂F

∂X

∣∣∣∣
n,m

+
1

2

∂2F

∂X2

∣∣∣∣
n,m

± 1

6

∂3F

∂X3

∣∣∣∣
n,m

,

Fn,m±1 ≈ F |n,m ± ∂F

∂Y

∣∣∣∣
n,m

+
1

2

∂2F

∂Y 2

∣∣∣∣
n,m

± 1

6

∂3F

∂Y 3

∣∣∣∣
n,m

,

(14)

where F ∈ U, V, θ. Substitution of Eq. (12) and Eq. (14) into Eqs. (9)-(11) yields

∂2U

∂T 2
=

∂2U

∂X2
+K1

∂2U

∂Y 2
− 1

2 cos θ0

[
2
∂ cos(θ + θ0)

∂X
+

1

3

∂3 cos(θ + θ0)

∂X3

]
, (15)
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∂2V

∂T 2
= K1

∂2V

∂X2
+

∂2V

∂Y 2
− 1

2 cos θ0

[
2
∂ cos(θ + θ0)

∂Y
+

1

3

∂3 cos(θ + θ0)

∂Y 3

]
, (16)

1

β2

∂2θ

∂T 2
= −C2

(
∂2θ

∂X2
+

∂2θ

∂Y 2
+ 8θ

)
− 16C3θ

2 − 32C4θ
3

− 1

4 cos2 θ0
sin(θ + θ0)

[
4 cos θ0

(
∂U

∂X
+

∂V

∂Y

)
− ∂2 cos(θ + θ0)

∂X2
− ∂2 cos(θ + θ0)

∂Y 2
− 8 cos(θ + θ0) + 8 cos θ0

]
+K1

1

4 cos2 θ0
cos(θ + θ0)

[
∂2 sin(θ + θ0)

∂X2
+

∂2 sin(θ + θ0)

∂Y 2

]
.

(17)

It is important to note that in deriving the above equations we disregarded all the terms that switch sign between
each neighboring unit (i.e., the terms with coefficient (−1)n+m). Moreover, if we assume that θ ≪ 1, sin(θ0 + θ)
and cos(θ0 + θ) can be approximated as

sin(θ0 + θ) ≈ sin θ0 + θ cos θ0 − θ2
sin θ0
2

− θ3
cos θ0
6

,

cos(θ0 + θ) ≈ cos θ0 − θ sin θ0 − θ2
cos θ0
2

+ θ3
sin θ0
6

.

(18)

Substituting Eq. (18) into Eqs. (15)-(17) and retaining the nonlinear terms up to the third order yields

∂2U

∂T 2
=

∂2U

∂X2
+K1

∂2U

∂Y 2
+

(
tan θ0 + θ − 1

2
tan θ0θ

2

)
∂θ

∂X
+

tan θ0
6

∂3θ

∂X3
, (19)

∂2V

∂T 2
= K1

∂2V

∂X2
+

∂2V

∂Y 2
+

(
tan θ0 + θ − 1

2
tan θ0θ

2

)
∂θ

∂Y
+

tan θ0
6

∂3θ

∂Y 3
, (20)

1

β2

∂2θ

∂T 2
= −

(
8C2 + 2 tan2 θ0

)
θ − (16C3 + 3 tan θ0) θ

2 −
(
32C4 + 1− 4 tan2 θ0

3

)
θ3

+
K1 − tan2 θ0 − 4C2

4

(
∂2θ

∂X2
+

∂2θ

∂Y 2

)
−
(
tan θ0 + θ − 1

2
tan θ0θ

2

)(
∂U

∂X
+

∂V

∂Y

)
.

(21)

We now consider a planar wave solution with the traveling coordinate ξ = X cosϕ + Y sinϕ − cT , where c is
the normalized wave speed, and ϕ is the angle between the propagation direction and the x axis. It follows that
Eqs. (19)-(21) can be rewritten as

(
c2 − cos2 ϕ−K1 sin

2 ϕ
) ∂2U

∂ξ2
=

(
tan θ0 + θ − 1

2
tan θ0θ

2

)
cosϕ

∂θ

∂ξ
+

tan θ0 cos
3 ϕ

6

∂3θ

∂ξ3
, (22)

(
c2 −K1 cos

2 ϕ− sin2 ϕ
) ∂2V

∂ξ2
=

(
tan θ0 + θ − 1

2
tan θ0θ

2

)
sinϕ

∂θ

∂ξ
+

tan θ0 sin
3 ϕ

6

∂3θ

∂ξ3
, (23)

(
c2

β2
− K1 − tan2 θ0 − 4C2

4

)
∂2θ

∂ξ2
= −

(
8C2 + 2 tan2 θ0

)
θ − (16C3 + 3 tan θ0) θ

2 −
(
32C4 + 1− 4 tan2 θ0

3

)
θ3

−
(
tan θ0 + θ − 1

2
tan θ0θ

2

)(
cosϕ

∂U

∂ξ
+ sinϕ

∂V

∂ξ

)
.

(24)

Integrating Eqs. (22) and (27) with respect to ξ yields

∂U

∂ξ
=

cosϕ
(
tan θ0θ + θ2/2− tan θ0θ

3/6
)

c2 − cos2 ϕ−K1 sin
2 ϕ

+
tan θ0 cos

3 ϕ

6c2 − 6 cos2 ϕ− 6K1 sin
2 ϕ

∂2θ

∂ξ2
+B1, (25)

∂V

∂ξ
=

sinϕ
(
tan θ0θ + θ2/2− tan θ0θ

3/6
)

c2 −K1 cos2 ϕ− sin2 ϕ
+

tan θ0 sin
3 ϕ

6c2 − 6K1 cos2 ϕ− 6 sin2 ϕ

∂2θ

∂ξ2
+B2, (26)
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where B1 and B2 are integration constants. Since we are interested in a soliton solution, it requires that

∂U

∂ξ

∣∣∣∣
ξ→∞

= 0,

∂V

∂ξ

∣∣∣∣
ξ→∞

= 0,

(27)

leading to B1 = 0 and B2 = 0. Using Eqs. (25) and (26), Eq. (24) can be reduced to (up to the third order)

∂ζζθ = D1θ +D2θ
2 +D3θ

3, (28)

where

D1 = −
(
8C2 + 2 tan2 θ0 +

cos2 ϕ tan2 θ0

c2 − cos2 ϕ−K1 sin
2 ϕ

+
sin2 ϕ tan2 θ0

c2 −K1 cos2 ϕ− sin2 ϕ

)
/Γ,

D2 = −
(
16C3 + 3 tan θ0 +

3 cos2 ϕ tan θ0/2

c2 − cos2 ϕ−K1 sin
2 ϕ

+
3 sin2 ϕ tan θ0/2

c2 −K1 cos2 ϕ− sin2 ϕ

)
/Γ,

D3 = −

[
32C4 + 1− 4 tan2 θ0

3
+

cos2 ϕ
(
1/2− 2 tan2 θ0/3

)
c2 − cos2 ϕ−K1 sin

2 ϕ
+

sin2 ϕ
(
1/2− 2 tan2 θ0/3

)
c2 −K1 cos2 ϕ− sin2 ϕ

]
/Γ.

(29)

with

Γ =
c2

β2
− K1 − tan2 θ0 − 4C2

4
+

tan2 θ0 cos
4 ϕ

6c2 − 6 cos2 ϕ− 6K1 sin
2 ϕ

+
tan2 θ0 sin

4 ϕ

6c2 − 6K1 cos2 ϕ− 6 sin2 ϕ
. (30)

Eq. (28) admits an analytical solution in the form of

θ =
1

E1 ± E2 cosh (ξ/W )
, (31)

where

E1 = − D2

3D1
,

E2 =

√
D2

2

9D2
1

− D3

2D1
,

W =
1√
D1

.

(32)

The existence of the two solutions defined by Eq. (31) requires that
(i) The width W f a soliton is a real number, yielding

D1 > 0 (33)

(ii) E2 is a real number, yielding

D2
2

9D2
1

− D3

2D1
> 0 (34)

(iii) the denominator in Eq. (31) is different from zero,

E1 + E2 cosh (ξ/W ) ̸= 0. (35)

These conditions can lead to D1 > 0 and D3 < 0. It is worth noting that Eqs. (28)-(32) can be reduced to
the soliton solution for monostable systems as reported in [2] (i.e., with C2 = K2 and C3 = C4 = 0). For the
parameters that are deliberately chosen to achieve a critical nucleus size of 2× 2 squares (θ0 ≈ 25.5◦, θM = 43◦,
K1 = 0.2, C2 = 0.051, C3 = −0.115, C4 = −0.579, β = 3.0556), we find that soliton solution cannot be
obtained for impact amplitude A0 = Ac. However, the corresponding pulse propagation observed in the numerical
simulations still behaves qualitatively similar to those reported in [2] where soliton solution can be obtained (the
simulation results are provided in the following section).
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Supplementary Note 3: Numerical characterizations

Anisotropy of the 2D transition wave

Here, we document the numerical simulation of a phase transition triggered quasistatically in a system of 30×30
squares. Snapshots from the numerical simulations are displayed in Supplementary Figure 6 for normalized times
T = 0, 40, 75, and 100. A critical nucleus is formed by applying rotation θin to the 2 × 2 squares at the center.
After nucleation, a phase transition is initiated and propagates outward throughout the rest of the metamaterial
in the form of a transition wave. Moreover, we observe that the transition propagates outward anisotropically: it
travels faster along the x and y axes than along the diagonals, and the wave fronts propagate along the diagonals
of the system (i.e., ±45◦ with respect to the x axis). To further corroborate this observation, we extract and
plot in Supplementary Figure 7b the spatial profiles at T = 40 for all three degrees of freedom (i.e., normalized
displacements U and V , and angle θ) along the horizontal and diagonal directions, as indicated by the black
and magenta dots in Supplementary Figure 7a, respectively. In Supplementary Figure 7c and 7d, we display the
contour plots of the spatio-temporal data of the angles along the horizontal and diagonal directions, respectively.
The transition wave propagates considerably faster along the horizontal direction.

Other critical nucleus sizes

Supplementary Figure 8 shows that two different critical nucleus sizes are numerically determined for the follow-
ing two sets of parameters: (K1 = 0.2, K2 = 0.0336, β = 3.0568) and (K1 = 0.2, K2 = 0.0428, β = 3.0593).
By definition, critical nucleus is the smallest cluster size from which the new phase starts to grow. In general, we
can start with an initial guess of the critical nucleus size, and perform numerical simulation to determine whether
it is the correct one (i.e., whether a phase transition can be observed numerically). If not, we can increase the size
and repeat the numerical simulation until the critical size is determined. Following the above procedures, for the
first set of parameters, we numerically determine the critical nucleus size as 6 squares with a rectangular shape
as shown in Supplementary Figure 8b. For the second set of parameters, we numerically determine the critical
nucleus size as 12 squares with a “+” shape as shown in Supplementary Figure 8d.

Head-on collision of two pulses triggered by tensile impulses

We show in Supplementary Figure 9 the simulation result for a head-on collision of two pulses with same
(negative) rotation, which is obtained with two tensile impulses for A0 = 0.306. Supplementary Figure 9a displays
snapshots of the wavefield before collision at T = 15, during collision at T = 28, and after collision at T = 35.
Supplementary Figure 8b gives a spatiotemporal plot of the angle of the squares extracted along the propagation
direction, and Supplementary Figure 9c gives the total kinetic energy of the system as a function of time. In
this case, nucleation does not occur and the energy exchange between the the two components (i.e., translational
and rotational) of the kinetic energy is almost negligible. As indicated in Fig.1b in the main text, the energy
barrier between Phase C and Phase L is very high and requires very large negative rotation (θL). During the
collision and before the energy barrier is reached, the rotational kinetic energy gained from the energy exchange is
quickly absorbed by the torsional stain energy. Therefore, we observe that the energy exchange does not increase
appreciably and is almost negligible when considering two tensile impulses.

Effect of propagation distance on collision-induced nucleation

To explore the effect of propagation distance on collision-induced nucleation, we consider three circular systems
with different diameters D = 24, 30, and 36 (note that D = 30 is the reference case studied in the main text). In
Supplementary Figure 10a-f, we report the snapshots of the wavefields and the energy of the nucleus highlighted
in maroon for D = 24, 30, and 36. Based on the full-scale simulations, we numerically identify the critical energy
barrier Enu

c , the critical impact amplitude Ac, and the critical total input energy Ein
c for the three cases, which

are reported in Supplementary Figure 10g. As expected, the critical impact amplitude Ac and total input energy
Ein

c increase as the diameter increases, because the nonlinear pulse spreads in the 2D domain, and therefore its
amplitude spatially decays as it propagates through the media. In contrast, the critical energy barrier Enu

c shows
no statistically significant change (the small differences may be caused by inevitable numerical errors).

To further investigate the spreading of the pulses mentioned above, we consider the propagation of a single
pulse. Supplementary Figure 11a shows snapshots from the numerical simulation of a single pulse propagation
at normalized times T = 13.9, 20.8, 27.8, and 34.7, and the corresponding spatial profiles of the pulse along
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its propagation direction are given in Supplementary Figure 11b. We observe dispersion, especially in the direc-
tion perpendicular to propagation, which is qualitatively similar to the expected 2D dispersion behavior observed
previously [2]. As a result, the amplitude of the pulse decreases as it propagates through the media.

Characterization of the anisotropic behavior of the nonlinear pulses

Similar to the previous discussion of transition waves, we show in Supplementary Figure 12 the contour plots
for mode-I and mode-II pulses using the spatiotemporal data of the angles for two different impact amplitudes
(A0 = 0.1 and 0.3). From these contour plots, we can approximately calculate the wave speed for each case, as
reported in Supplementary Figure 12. The wave speed of mode I is much faster than that of mode II. Moreover,
the wave speeds associated with both modes slightly decrease as the impact amplitude increases from A0 = 0.1
to 0.3. Moreover, we reported in Supplementary Figure 13 the snapshots for impact angle of 30◦. We find that
the wave separate into two modes with different wave speeds. Comparing Supplementary Figure 13a and 13b, we
observe that this separation behavior is more pronounced in a larger structure. These findings are consistent with
previous work on a monostable system of rotating squares [2].

Control of the spatio-temporal shape of the nucleated phase

Here, we give an example to demonstrate how the spatio-temporal shape of the nucleated phase can be controlled
by changing the impact angles. As shown in Fig. 4b in the main text and Supplementary Figure 14a, collision of
two mode-I pulses triggered by impacts at the left and top boundary can lead to propagation of the nucleated phase
along the diagonal, at 45◦ relative to the x and y axes. By moving the left impact to the right boundary, the new
phase will grow predominantly along the other diagonal (i.e., −45◦ relative to the x and y axes), as displayed in
Supplementary Figure 14b.
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Supplementary Figure 1: Fabrication process of a system comprising 10 columns and 10 rows.

Supplementary Figure 2: a Tensile tests were conducted using an Instron model 68SC-5 equipped with a custom aluminum
fixture. b Schematic of tensile test on a 2 × 2 unit without magnets (the rods are inserted through the holes of the squares).
c Schematic of tensile test on a 2 × 2 unit with magnets (the rods with bases are attached to both sides of the squares). Black
arrows indicate the direction of the applied force; grey arrows indicate the direction of rotation of each square. d Schematic of
a 2× 2 unit under tensile loading. e Schematic of a 1× 2 unit under shear loading.
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Supplementary Figure 3: Force-displacement relationships for a 2× 2 unit under tensile loading a without magnets and b with
magnets, and c a 1 × 2 unit under shear loading. Blue and red lines are obtained from experiments and discrete model,
respectively.

a b

c

Supplementary Figure 4: a The experimental specimen rests on a support table. The orange circle indicates the nucleation site
subjected to loading. b Top view of the center four squares, with diamond-shaped markers adhered to the center of each square.
c Detailed view of a square with plastic feet (to reduce friction).
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Supplementary Figure 5: Experimentally measured angles of the four squares indicated by the yellow dashed lines in the inset.
The three vertical lines correspond to the times of the later three optical images displayed in Fig.1c in the main text.
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0-0.1 0.3

a b c d

Supplementary Figure 6: Snapshots of quasistatic nucleation and growth observed via numerical simulation for a system
comprising 30× 30 squares at normalized times a T = 0, b T = 40, c T = 75, and d T = 100.
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Supplementary Figure 7: Anisotropy of the transition wave. a Snapshots of the wavefield at T = 0 (T is set to 0 when the 2×2
squares at the center are rotated to Phase R) and 40. b Spatial profiles along the horizontal (black dots) and diagonal (magenta
dots) directions for angle θ, displacement U , and displacement V . Contour plots of the spatio-temporal data for the angle along
the c horizontal and d diagonal directions.
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Supplementary Figure 8: Critical nucleus size for two sets of parameters. a 2 × 2 squares and b 6 squares with a rectangular
shape rotated to Phase R initially for (K1 = 0.2,K2 = 0.0336, β = 3.0568); c 3 × 3 squares and d 12 squares with a “+”
shape rotated to Phase R initially for (K1 = 0.2,K2 = 0.0428, β = 3.0593).
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Supplementary Figure 9: Head-on collision of two pulses triggered by tensile impulses. a Snapshots of the wavefield before
collision at T = 15, during collision at T = 28, and after collision at T = 35. b Spatiotemporal plot obtained from the
numerical simulation, showing the angle θ for squares along the propagation direction as a function of time. c Kinetic energy
of the whole structure as a function of time.
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Supplementary Figure 10: Head-on collisions of nonlinear pulses in circular systems for three different diameters. Snapshots
of wavefields and critical energy barrier of the nucleus highlighted in maroon for: a and b D = 24 and A0 = 0.142; c and
d D = 30 and A0 = 0.153; e and f D = 24 and A0 = 0.142. g Table: critical energy barrier Enu

c , critical impact amplitude
Ac, and critical total input energy Ein

c for D = 24, 30, and 36.
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Supplementary Figure 11: Spreading of a single pulse. a Snapshots of wavefields for a single pulse at T = 13.9, 20.8, 27.8,
and 34.7. b Spatial profiles of the pulse along the propagation direction highlighted by the red lines.
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Supplementary Figure 12: Spatio-temporal plots extracted along the propagation direction for a pulse mode I with A0 = 0.1;
b pulse mode I with A0 = 0.3; c pulse mode II with A0 = 0.1; d pulse mode II with A0 = 0.3.
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Supplementary Figure 13: Snapshots of wavefields with impact angle of 30◦ for a a circular system with 30 squares in diameter
at T = 45 and b a circular system with 50 squares in diameter at T = 60. The red squares in a and b are those to which the
impact is applied.
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Supplementary Figure 14: Control of the spatio-temporal shape of the nucleated phase. a Collision of two mode-I pulses
triggered by impacts at the left and top boundary with A0 = 0.292, leading to propagation of the nucleated phase along the
diagonal, at 45◦ relative to the x and y axes. b Collision of two mode-I pulses triggered by impacts at the right and top boundary
with A0 = 0.292, leading to propagation of the nucleated phase along the other diagonal, at −45◦ relative to the x and y axes.
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