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FABRICATION

We make use of an extrusion-based 3D printing technique known as direct ink writing to produce the structures
in this work. Unlike many conventional commercial 3D printers that rely on either temperature changes or photo-
polymerization, direct ink writing is an ambient process that relies on material rheology to produce a pattern that
maintains its shape [1]. Subsequent immobilization steps (thermal crosslinking, sintering, etc.) can then be taken
after the pattern is formed, in a materials-dependent manner. The advantage of this approach is the broader palette
of materials that is compatible with it. Polydimethylsiloxane (PDMS) is a well-behaved silicone rubber that possesses
the necessary elastomeric qualities for our structures. However, its conventional precursors are Newtonian fluids
that do not maintain their shape after extrusion. A 3D-printable “ink” version of PDMS can be produced through
the addition of fumed silica to the resin, resulting in a non-Newtonian paste. Our ink was produced by blending
commercially-available PDMS materials (85 wt% Dow Corning SE-1700 and 15 wt% Dow Corning Sylgard 184) in a
mixer (Flacktek SpeedMixer). This results in a rheological profile that includes both shear-thinning effects as well as
viscoelastic yielding behavior (see SI of Ref. [2] for more details). A shear-thinning response, defined by a decrease
in apparent viscosity with increasing shear rate, facilitates extrusion of the material through tapered nozzles (in this
case 0.84 mm diameter) during printing. The viscoelastic yielding behavior is characterized by a high storage modulus
(G’) when shear stress is low (such that the material maintains its shape and behaves like an elastic solid) and a
defined yield stress above which the storage modulus suddenly drops (allowing flowability).

The paste-like material therefore flows well during extrusion, but maintains its shape when patterned in 3D.
Patterning is performed by a commercial 3D motion control system, which is controlled by G code commands which
we generated via python scripts. After the material is patterned, a cross-linking step (100 ◦C for approximately
30 minutes) produces the familiar hyperelastic mechanical response of PDMS. After curing, additional structural
features can be added, for example, through the addition of additional PDMS (Sylgard 184) and (optionally) Cu
cylinders that add nodal mass and facilitate motion tracking during subsequent experiments (as in Ref. [3]).
To characterize the response of the two cured PDMS variants (i.e. the standard cast and printed PDMS) used in our
structures, we performed dynamic mechanical analysis (DMA) using a TA Instruments RSA III in compression mode.
A nominal 100 kPa pre-stress was used, and oscillations of 0.001 strain were imposed up to approximately 90 Hz
at room temperature. As shown in Fig. S1, we measured the storage and loss moduli over the relevant frequency
range. There is negligible difference between the standard variety of PDMS (indicated as “PDMS (control)”) and the
silica-filled variety (indicated as “PDMS (printed)”) that we use as a 3D printing ink.
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Figure S1: Storage and loss moduli of the cured PDMS materials used in this work. PDMS (control) refers to standard cast
PDMS (used in the centers of the squares) while PDMS (printed) refers to the silica-filled PDMS used during 3D printing of
the structure.

ADDITIONAL EXPERIMENTAL RESULTS

Input signals

In Fig. S2 we report the input displacement profile, u1(t), and the corresponding velocity profile, v1(t), for the
five experiments presented in Fig. 2(b). It should be noted that all profiles present similar features. Note that the
displacement profile for the impact characterized by (umax1 , vmax1 ) =(4.10 mm, 1166 mm/s) has a very similar shape
as tanh function and therefore produces the best solitary wave.

Figure S2: (a) Input displacement profile u1(t) and (b) corresponding velocity profile v1(t) for the five experiments presented
in Fig. 2(b).

Rotation of the squares

Movies S1 and S2 reveal that the squares not only move horizontally when the pulse propagates, but also rotate.
To capture the rotational waves propagating through the sample we conduct an additional set of experiments where
the camera is focused only on three squares located at two-thirds of the sample (i.e. the 20th, 21st and 22nd square),
as shown in Fig. S3(a) (see also Movie S3). To capture the rotational waves propagating through the sample, we track
the positions of two diametrically opposed markers on the copper cylinders, highlighted by red dots and labelled as
”top” and ”bottom” in Fig. S3(a). The rotation θj of the j-th square is then obtained as
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θj(t) = (−1)
j

tan−1

([
xtopj (t)− xtopj (0)

]
−
[
xbotj (t)− xbotj (0)

][
ytopj (t)− ytopj (0)

]
−
[
ybotj (t)− ybotj (0)

] ) , (S1)

where (xtopj , ytopj ) and (xbotj , ybotj ) (j = 20, 21 and 22) denote the positions of the two markers. Furthermore, for
the same three squares we also monitored their horizontal displacement, by tracking the horizontal position of the
marker at the center of the copper cylinders (highlighted by a red dot and labelled as ”center” in Fig. S3(a))

In Figs. S3(b) and (c) we show the evolution of uj and θj as a function of time, respectively. The results confirm
the simultaneous propagation of translational and rotational waves in our structure.

Figure S3: (a) Movie frame: three squares are analyzed (i.e. the 20th, 21st and 22nd squares). For each unit cell three markers
(red dots) are tracked. (b) Extracted horizontal displacements uj and (c) angles θj as a function of time.

ANALYTICAL EXPLORATION

To get a deeper understanding of the mechanical response of the structure, we analytically investigate its behavior.
We first establish a discrete model and determine the governing equations. Then, we take the continuum limit and
derive analytical solutions.

Discrete model

Our structure consists of a network of square domains connected by thin ligaments (see Fig. 1 of the main text and
Figure S4-a), all made of elastomeric material (polydimethylsiloxane - PDMS). The squares have diagonal lengths
of 2l that are rotated by an angle θ0 with respect to the horizontal direction. In this study we are investigating
the propagation of plane waves along the x-direction. To efficiently model the system, we first notice that when a
planar wave propagates through the system all deformation is localized at the hinges that bend in-plane, inducing
pronounced rotations of the squares. Therefore, the structure can be modeled as a network of rigid squares connected
by springs at their vertices (see Figure S4-b). More specifically, we model each hinge with two linear springs: (i) a
compression/tension spring with stiffness k and (ii) a torsional one with stiffness kθ.

Finally, we also find that, when a planar wave propagates in the x-direction, (i) the squares do not move in the
y-direction; (ii) neighboring squares aligned vertically experience the same horizonal displacement and rotate by the
same amount but in opposite directions; and (iii) neighboring squares always rotate in opposite directions. Therefore,
since in this study we focus on the propagation of planar waves in the x-direction, each rigid square in our discrete
model has two degrees of freedom: the displacement in the x-direction, u, and the rotation about the z-axis, θ.
Moreover, focusing on the rigid [j, i]-th square (see Figure S4), we have

u[j, i] = u[j, i+1], θ[j, i] = θ[j, i+1]. (S2)

Note that, as indicated by the blue and red arrows in Fig. S4, we define positive direction of rotation alternatively for
neighboring squares (i.e., if for the [j, i]-th square a clockwise rotation is positive, then for [j, i− 1]-th, [j, i + 1]-th,
[j+1, i]-th and [j−1, i]-th ones counterclockwise rotation is considered as positive). We found this choice to facilitate
our analysis.
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Figure S4: (a) Picture of our structure. (b)-(c) Schematics of the system.

Governing equations of the discrete model

To determine the governing equations for the discrete model, we focus on the [j, i]-th rigid square, for whose
behavior is governed by

m[j, i]ü[j, i] =

4∑
p=1

F [j, i]
p ,

J [j, i]θ̈[j, i] =

4∑
p=1

M [j, i]
p ,

(S3)

where m[j, i] and J [j, i] are the mass and moment of inertia of the rigid square, respectively. Moreover, F
[j, i]
p and

M
[j, i]
p are the forces in horizonal direction and moments generated at the p-th vertex of the rigid square by the ten-

sion/compression and torsional springs, respectively. To calculate these forces and moments, we start by determining

the vectors r
[j, i]
p (p=1, 2, 3, 4) that connect the center of the [i, j]-th rigid square to its four vertices (see Fig. S4-c),

r
[j, i]
1 (θ[j, i]) = l

[
cos(θ[j, i] + θ0)

]
ex + l

[
(−1)

j
sin(θ[j, i] + θ0)

]
ey,

r
[j, i]
2 (θ[j, i]) = l

[
− (−1)

j
sin(θ[j, i] + θ0)

]
ex + l

[
cos(θ[j, i] + θ0)

]
ey,

r
[j, i]
3 (θ[j, i]) = l

[
− cos(θ[j, i] + θ0)

]
ex + l

[
− (−1)

j
sin(θ[j, i] + θ0)

]
ey,

r
[j, i]
4 (θ[j, i]) = l

[
(−1)

j
sin(θ[j, i] + θ0)

]
ex + l

[
− cos(θ[j, i] + θ0)

]
ey,

(S4)

The deformation of the springs connected to the vertices of the rigid square can then be written as

∆l1
[j, i] =

(
u[j+1, i] − u[j, i]

)
ex +

[(
r
[j+1, i]
3 (θ[j+1, i])− r

[j+1, i]
3 (0)

)
−
(
r
[j, i]
1 (θ[j, i])− r

[j, i]
1 (0)

)]
∆θ

[j, i]
1 = θ[j, i] + θ[j+1, i]

∆l2
[j, i] =

[(
r
[j, i+1]
4 (θ[j, i+1])− r

[j, i+1]
4 (0)

)
−
(
r
[j, i]
2 (θ[j, i])− r

[j, i]
2 (0)

)]
∆θ

[j, i]
2 = θ[j, i] + θ[j, i+1]

∆l3
[j, i] =

(
u[j−1, i] − u[j, i]

)
ex +

[(
r
[j−1, i]
1 (θ[j−1, i])− r

[j−1, i]
1 (0)

)
−
(
r
[j, i]
3 (θ[j, i])− r

[j, i]
3 (0)

)]
∆θ

[j, i]
3 = θ[j, i] + θ[j−1, i]

∆l4
[j, i] =

[(
r
[j, i−1]
2 (θ[j, i−1])− r

[j, i−1]
2 (0)

)
−
(
r
[j, i]
4 (θ[j, i])− r

[j, i]
4 (0)

)]
∆θ

[j, i]
4 = θ[j, i] + θ[j, i−1]

(S5)
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where ∆l[m,n]p and ∆θ
[m,n]
p denote the changes in length and angle experienced by the tension/compression and

rotational springs on the p-th vertex of [m, n]-th rigid square, respectively. It follows that

F [j, i]
p =

(
k∆l[j, i]p +

kθ∆θ
[j, i]
p

l2

(
ez × r[j, i]p

))
· ex,

M [j, i]
p = −kθ∆θ[j, i]p − k r[j, i]p ×∆lp

[j, i].

(S6)

Substitution of Eqns. (S6) and (S2) into Eqns. (S3) yields

m[j, i]ü[j, i] = k
(
u[j+1, i] − 2u[j, i] + u[j−1, i] − l cos(θ[j+1, i] + θ0) + l cos(θ[j−1, i] + θ0)

)
+
kθ
l

(
θ[j−1, i] − θ[j+1, i]

)
sin(θ[j, i] + θ0),

J [j, i]θ̈[j, i] = −kθ
(
θ[j+1, i] + 6θ[j, i] + θ[j−1, i]

)
− kl

(
u[j+1, i] − u[j−1, i]

)
sin(θ[j, i] + θ0)

+ kl2 sin(θ[j, i] + θ0)
(

cos(θ[j+1, i] + θ0) + 6 cos(θ[j, i] + θ0) + cos(θ[j−1, i] + θ0)− 8 cos(θ0)
)
.

+ kl2 cos(θ[j, i] + θ0)
(

sin(θ[j+1, i] + θ0) + sin(θ[j−1, i] + θ0)− 2 sin(θ[j, i] + θ0)
)

(S7)

which represent the governing equations for the discrete system.

Continuum limit

While Eqs. (S7) contains the full nonlinear and dispersive terms of the modeled system and can only be solved
numerically, a deeper insight into the system dynamics can be achieved by further simplifying them to derive analytical
solutions. To this end, we fist introduce the normalized displacement U [j, i] = u[j, i]/(2l cos θ0), time T = t

√
k/m,

stiffness K = kθ/(kl
2) and inertia α = l

√
m/J . Moreover, since in Eqs. (S7) only the displacements and rotations of

squares in the i-th appear, for the sake of simplicity we set Uj = U [j, i], and θj = θ[j, i]. The governing equations Eqs.
(S7) can be then be written in dimensionless form as

∂2Uj
∂T 2

= Uj+1 − 2Uj + Uj−1 −
1

2 cos(θ0)
[cos(θj+1 + θ0)− cos(θj−1 + θ0) +K (θj+1 − θj−1) sin(θj + θ0)]

∂2θj
∂T 2

= α2

{
−K(θj+1 + 6θj + θj−1)− 2(Uj+1 − Uj−1) cos(θ0) sin(θj + θ0)

+ sin(θj + θ0)
[

cos(θj+1 + θ0) + 6 cos(θj + θ0) + cos(θj−1 + θ0)− 8 cos(θ0)
]

+ cos(θj + θ0)
[

sin(θj+1 + θ0) + sin(θj−1 + θ0)− 2 sin(θj + θ0)
]}
.

(S8)

Next , we introduce two continuous functions U (X) and θ (X), which interpolate the discrete variables Uj and θj
as

U (Xj) = Uj , and θ (Xj) = θj , (S9)

where Xj = xj/2l cos(θ0) denotes the normalized coordinate along the x-axis. Using Taylor expansion, the displace-
ment U and rotation θ in correspondence of the (j − 1)-th and (j + 1)-th squares can then be expressed as

U (Xj−1) ≈ U (Xj)−
∂U

∂X

∣∣∣
X=Xj

+
1

2

∂2U

∂X2

∣∣∣
X=Xj

,

U (Xj+1) ≈ U (Xj) +
∂U

∂X

∣∣∣
X=Xj

+
1

2

∂2U

∂X2

∣∣∣
X=Xj

,

θ (Xj−1) ≈ θ (Xj)−
∂θ

∂X

∣∣∣
X=Xj

+
1

2

∂2θ

∂X2

∣∣∣
X=Xj

,

θ (Xj+1) ≈ θ (Xj) +
∂θ

∂X

∣∣∣
X=Xj

+
1

2

∂2θ

∂X2

∣∣∣
X=Xj

,

(S10)
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from which the derivatives of U and θ are obtained as

∂U

∂X

∣∣∣
X=Xj

≈ 1

2
[U (Xj+1)− U (Xj−1)] ,

∂2U

∂X2

∣∣∣
X=Xj

≈ U (Xj+1)− 2U (Xj) + U (Xj−1) ,

∂θ

∂X

∣∣∣
X=Xj

≈ 1

2
[θ (Xj+1)− θ (Xj−1)] ,

∂2θ

∂X2

∣∣∣
X=Xj

≈ θ (Xj+1)− 2θ (Xj) + θ (Xj−1) .

(S11)

Moreover, to further simplify the equations, we assume that the rotation angle θ is small, so that sin θ ∼ θ and
cos θ ∼ 1. It follows that

sin(θj + θ0) ≈ sin θ0 + θj cos θ0,

cos(θj + θ0) ≈ cos θ0 − θj sin θ0.
(S12)

Finally, we substitute Eqs. (S11) and (S12) into the discrete governing equations (Eqs.(S8)) and retain the nonlinear
terms up to the second order as well as the dominant dispersion terms, obtaining

∂2U

∂T 2
=
∂2U

∂X2
+ (1−K) tan(θ0)

∂θ

∂X
,

∂2θ

∂T 2
= α2

[
(cos(2θ0)−K)

∂2θ

∂X2
− 2 sin(2θ0)

∂U

∂X
− 4

(
2K + cos2(θ0)

∂U

∂X
+ 2 sin2(θ0)

)
θ − 4 sin(2θ0)θ2

]
,

(S13)

which represent the continuum governing equations of the system.
Next, we introduce the travelling wave coordinate ζ = X− cT , c being the normalized pulse velocity (the real pulse

velocity is c 2l
√
k/m), so that Eqs. (S13) become

∂2U

∂ζ2
= − (1−K) tan(θ0)

1− c2
∂θ

∂ζ
, (S14)

∂2θ

∂ζ2
= 2α2β sin(2θ0)

∂U

∂ζ
+ 4α2β sin(2θ0)θ2 + 4α2β[2K + cos2(θ0)

∂U

∂ζ
+ 2 sin2(θ0)]θ, (S15)

where

β =
1

α2(cos(2θ0)−K)− c2
. (S16)

Note that the displacement U and rotation θ are now continuous functions of ζ and T . Integration of Eq. (S14)
with respect to ζ, with the assumption of a zero integration constant (i.e. a wave with a finite temporal and spatial
support), yields

∂U

∂ζ
= − (1−K) tan θ0

1− c2
θ, (S17)

which can then be substituted into Eq. (S15) to obtain

∂2θ

∂ζ2
+ Pθ +Qθ2 = 0, (S18)

where

P =
4α2β

(1− c2)

[
(2c2 − 1−K) sin2 θ0 − 2(1− c2)K

]
,

Q =
2α2β

(1− c2)
(2c2 − 1−K) sin(2θ0).

(S19)
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Note that for θ0 → 0, Q → 0 and Eq. (S18) becomes a linear equation. Therefore, the analytical solution derived
here is not valid when θ0 → 0, since the cubic term, which is omitted here, must be considered to properly describe
the propagation of nonlinear waves in such structures.

Eq. (S18) has the form of the well-known nonlinear Klein-Gordon equation with quadratic nonlinearity. When
P < 0 and Q > 0, analytical solutions of Eq. (S18) exist in the form of a finite amplitude solitary wave with a stable
profile

θ = A sech2 ζ

W
, (S20)

where A, c and W denotes the amplitude, velocity and characteristic width of the wave (note that solutions for P < 0
and Q < 0 also exist, but are diverging for ζ → 0). Moreover, by substituting Eq.(S20) into Eq. (S17) the solution
for the displacement is found as

U = A
(1−K)W tan(θ0)

(1− c2)

[
1− tanh

(
ζ

W

)]
. (S21)

Note that the pulse velocity c and width W depend both on the amplitude A of the wave and the geometry of the
structure (i.e. α, K and θ0). In fact, substitution of Eq. (S20) into Eq. (S18) yields

A

(
P +

4

W 2

)
sech2 ζ

W
+A

(
AQ− 6

W 2

)
sech4 ζ

W
= 0, (S22)

which is satisfied for any ζ only if

P +
4

W 2
= 0, and AQ− 6

W 2
= 0. (S23)

By substituting Eqs. (S19) into Eqs. (S23), we finally find

c =

√
6K + 3 (1 +K) sin2(θ0) +A (1 +K) sin(2θ0)

6K + 6 sin2(θ0) + 2A sin(2θ0)
,

W =
1

α

√
(1− c2)[α2 (cos(2θ0)−K)− c2]

2(1− c2)K + (1− 2c2 +K) sin2(θ0)

(S24)

In Fig. S5 we report the evolution of c and W as predicted by Eqs. (S24). In Figs. S5-a and -d we consider
K = 0.073, α = 1.70 and report the evolution of W and c as a function of A and θ0. Note that we consider
5◦ < θ0 < 30◦. The lower limit for θ0 is dictated by the fact that Eq. (S18) is not valid when θ0 → 0 (since the
quadratic term vanished in this case), while the upper limit is determined by noting that, for this particular choice of
K and α, the characteristic width W is an imaginary number for θ0 > 36.7◦ (indicating that the solitons no longer
exist for θ0 > 36.7◦). In Fig. S5-b and -e we consider θ0 = 25◦ and α = 1.70 and report the evolution of W and c as
a function of A and K. Finally, in Fig. S5-c and -f we consider θ0 = 25◦, K = 0.073 and report the evolution of W
and c as a function of A and α. Note that the structure used in this study is characterized by θ0 = 25◦, α = 1.70 and
K = 0.073.

The contour plots reveal that the pulse speed c is not significantly affected by the amplitude A. In contrast, A
has an important effect on W , that is found to dramatically increase as the pulse amplitude decreases. In fact, the
results of Figs. S5-a, -b and -c indicate that W → ∞ as A → 0. Note that as A → 0 the nonlinear response of
the system is weakly activated and W needs to be very large (a low frequency or long wavelength pulse) to ensure
a balancing weak dispersion. As such, solitary waves are expected to form only after long propagation distances,
even for excitations very close to the ideal ones. Experimentally, this requires very long samples, but then the pulse
would be subjected to strong damping, posing serious limitations to the observation and existence of small amplitude
solitary waves. Moreover, we find that the pulse width W can also be tuned by changing the stiffness parameter K.
Our results indicate that c is affected by changes in both θ0 and K.
It is important to note that the existence of the solitary solution to the Klein-Gordon equation (Eq. (S18)) requires
that

P =
4α2β

(1− c2)

[
(2c2 − 1−K) sin2 θ0 − 2(1− c2)K

]
< 0,

Q =
2α2β

(1− c2)
(2c2 − 1−K) sin(2θ0) > 0.

(S25)
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By substituting Equation (S24)1 into Equation (S25), we obtain two non-linear inequalities in A, α, K and θ0.
The structure supports a soliton if these two inequalities are satisfied for all amplitudes A < π/4 − θ0, where the
constraint is introduced to avoid contact between neighboring squares. We find that the system supports a soliton
for α ∈ [1.09,∞), K ∈ [0, 0.336] and θ0 ∈ [0◦, 36.7◦]. Note that the system considerd in this study is characterized by
α = 1.70, K = 0.073 and θ0 = 25◦.

Figure S5: Contour plots showing the evolution of c and W . (a) Evolution of W as a function of A and θ0 (assuming K = 0.073
and α = 1.70). (b) Evolution of W as a function of A and K (assuming θ0 = 25◦ and α = 1.70). (c) Evolution of W as a
function of A and α (assuming θ0 = 25◦ and K = 0.073). (d) Evolution of c as a function of A and θ0 (assuming K = 0.073
and α = 1.70). (e) Evolution of c as a function of A and K (assuming θ0 = 25◦ and α = 1.70). (f) Evolution of c as a function
of A and α (assuming θ0 = 25◦ and K = 0.073).
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Figure S6: Comparison between analytical solution (continuous line) and experimental results (markers). Experimental results
are reported for seven different impacts characterized by different combinations of umax1 and vmax1 .

Finally, we note that the maximum displacement and velocity induced by the pulse, Umax and V max, can be
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obtained from Eq. (S21) as

Umax = max (U) = 2A
(1−K)W tan(θ0)

(1− c2)

V max = max

(
dU

dT

)
= cA

(1−K) tan(θ0)

(1− c2)

(S26)

so that

Umax

V max
=

2W

c
=

2

α

√ [
6K + 6 sin2(θ0) + 2A sin(2θ0)

][
(1− c2)[α2 (cos(2θ0)−K)− c2]

][
6K + 3 (1 +K) sin2(θ0) +A (1 +K) sin(2θ0)

][
2(1− c2)K + (1− 2c2 +K) sin2(θ0)

] . (S27)

Eqn. (S27) defines a parametric representation of a curve, where A is the parameter. Such a curve is plotted in Fig. 4
of the main text with results from five different experiments and in Fig. S6 together with results from another seven
experiments. Note that the experimental data (markers) are obtained by monitoring the maximum displacement
and velocity experienced by the 1st, 2nd, 5th, 10th, 15th and 20th squares. Interestingly, we find that all applied
excitations result in the propagation of a soliton. However, it is important to note that this observation is not general
and related to the limited variety of excited displacement profiles (all of them are reasonable closed to tanh - see Fig.
S2). When in our numerical simulations we use an input displacement profile very different from tanh,

U1(T ) = sech
T

B
, (S28)

B being a constant, solitons are not generated (see Fig. S7).

Figure S7: Response of the system for excited displacement profile with the form of the sech function. The profile displacement
is defined as U1(T ) = sech(T/B) with (a) B = 20, (b) B = 10 and (c) B = 5.



10

Propagation of small amplitude waves

As discussed above, for sufficiently small amplitudes the propagating elastic waves do not excite the nonlinear
response of the system. As such, in this case we expect small amplitude dispersive waves and not stable solitary waves
to propagate through the structure.

To better understand how elastic waves with sufficiently small amplitudes propagate through the system, we make
use of Eqs. (S12) and linearize the discrete governing equations (S8) to obtain

∂2Uj
∂T 2

= Uj+1 − 2Uj + Uj−1 +
1

2
tan(θ0) (1−K) (θj+1 − θj−1) ,

∂2θj
∂T 2

= α2
[
(cos(2θ0)−K) (θj+1 + θj−1)− 2

(
1 + 2 sin2(θ0) + 3K

)
θj − sin(2θ0) (Uj+1 − Uj−1)

]
.

(S29)

Eqs. (S29) can be written in matrix form as

MÜj +
∑

p=−1,0,1

K(p)Uj+p = 0 (S30)

where

M =

[
1 0
0 1

]
, Üj+p =

[
∂2Uj+p

∂T 2

∂2θj+p

∂T 2

]
, Uj+p =

[
Uj+p
θj+p,

]
, K−1 =

[
−1 1

2 (1−K) tan(θ0)
−α2 sin(2θ0) −α2(cos(2θ0)−K)

]
K0 =

[
2 0
0 2α2(1 + 2 sin2(θ0) + 3K)

]
, K1 =

[
−1 − 1

2 (1−K) tan(θ0)
α2 sin(2θ0) −α2(cos(2θ0)−K)

] (S31)

Next, we seek a solution in the form of a harmonic wave

Uj+p(T ) = Ũ(µ) exp i(µXj+p − ωT ) (S32)

where ω is the temporal frequency of harmonic motion, µ is the wavenumber and Ũ is a complex quantity that defines
the amplitude of wave motion. Substitution of Eq. (S32) into Eq. (S30) yields

−ω2MÜj +
∑

p=−1,0,1

K(p)epµ = 0 (S33)

which can be solved numerically for wavenumbers µ ∈ [0, π] to obtain the dispersion relation curves shown in Fig.
S8-a. Note that in this band structure the frequency ω is normalised by

√
k/m. It is important to point out that the

two degrees of freedom of the system are coupled, so that both dispersion curves have translational and rotational
components.

Finally, in Fig. S8-b we report the evolution of the group velocity (cg = dω/dk) and phase velocity (cp = ω/k) for

the lower branch as a function of the wavenumber. Both velocities are normalized by 2l
√
k/m.

Estimation of k and kθ

To connect the discrete model to our sample, we need to estimate the mass of the squares (m), their rotational
inertia (J) and the spring stiffnesses (k and kθ). The mass m can be easily measured as 2.093 g and the rotational
inertia J can be calculated from the geometry of the squares to obtain J = 18.11 g·mm2, so that nondimensional
parameter α is determined as α = l

√
m/J = 1.70 (note that l denotes the half length of the square diagonals, l =

5.517 mm). To estimate the spring stiffness k, we start by extracting from our experiments the group velocity of
the fastest travelling wave packets, c̃maxg . We find that any applied excitation results in c̃maxg ≈ 29 m/s. Since the
numerical results shown in Fig. S8-b indicate that the maximum normalized group velocity is cmaxg = 0.8670, it
follows that

cmaxg 2l

√
k

m
= 0.8670 · 2 · 0.005517

√
k

0.002093
≈ 29 m/s (S34)
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Figure S8: (a) Dispersion curves and (b) evolution of the group and phase velocity for the lower branch as a function of the
wavenumber. To generate the plots, we considered K=0.073, α=1.70 and θ0=25◦.

from which we obtain k = 19235 N/m.
Having determined k, we then use equilibrium considerations and Finite Element (FE) simulations to obtain kθ.

On the analytical side, since the structure is periodic, we focus on a single square and consider quasi static uniaxial
compression along the vertical direction (see Fig. S3-a). For this loading case, a force F is applied to the top and
bottom hinges, while there are no forces on the left and right hinges (since the structure is stress-free in horizonal
direction). The moment generated by F is therefore balanced by those generated by the four rotational springs, so
that ∑

MA = −8kθθ + 2Fl sin(θ0 + θ) = 0, (S35)

where the reference point A is indicated in Fig. S3-a. It follows from Eq. (S35) that

F =
4kθθ

l sin(θ0 + θ)
. (S36)

Moreover, the resulting compressive strain ε can be written as

ε =
F

2lk
+ (cos(θ0)− cos(θ0 + θ))

=
2Kθ

sin(θ0 + θ)
+ (cos(θ0)− cos(θ0 + θ))

(S37)

where the first term accounts for the compression of the linear springs and the second one for the rotation of the
square. Finally, Eqs.(S36) and (S37) can used to generate the force-strain (F -ε) curve, shown as a continuous line in
Fig. S9-b.

On the numerical side, we simulate the response of the structure under uniaxial compression using
ABAQUS/Standard. To reduce the computational costs and make sure the response of the system is not domin-
ated by boundary effects, we consider a unit cell comprising a 2×2 array of squares with identical geometry as those
considered in the experiments and apply periodic boundary conditions. The unit cell is discretized with plane strain
triangular elements (ABAQUS element type: CPE6) and the material is modeled using an almost incompressible
Neo-Hookean material with initial shear modulus µ0 = 0.32MPa [2] . The compressive force as a function of the
applied strain is then extracted from the simulation and compared to the analytical prediction. The best agreement
between the two curves is found for kθ = 0.0427 Nm/rad (see Fig. S3-b), so that we obtain K = kθ/kl

2 = 0.073.
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Figure S9: (a) Schematic of an individual square. (b) Force-strain curve under uniaxial compression. Comparison between
analytical (continuous line) and numerical (markers) results.
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MOVIE CAPTIONS

Movie S1 Experiment in which the impactor prescribes a displacement signal to the first square characterized by
(umax1 , vmax1 )=(3.11 mm, 524 mm/s). Note that after the pulse is applied the squares near the impactor vibrate at
high frequency. This is because the applied impact results in a displacement signal that does not exactly match that
of the supported solitary wave. Therefore, not all the energy applied by the impactor goes into the soliton and some
activates vibrations of the squares near the impactor. It is important to note that these vibrations have frequencies
in the range of those of the upper branch of the dispersion relation shown in Fig. S8 (i.e. ∼ 1170 − 1720 Hz - note
that the frequency in the plot is normalized by

√
k/m).

Movie S2 Experiment in which the impactor prescribes a displacement signal to the first square characterized by
(umax1 , vmax1 )=(4.10 mm, 1166 mm/s). Note that after the pulse is applied the squares near the impactor vibrate at
high frequency. This is because the applied impact results in a displacement signal that does not exactly match that
of the supported solitary wave. Therefore, not all the energy applied by the impactor goes into the soliton and some
activates vibrations of the squares near the impactor. It is important to note that these vibrations have frequencies
in the range of those of the upper branch of the dispersion relation shown in Fig. S8 (i.e. ∼ 1170 − 1720 Hz - note
that the frequency in the plot is normalized by

√
k/m).

Movie S3 Experiment with the camera focused only on four squares, located at two-thirds of the sample. This
experiment is conducted to capture the rotational waves propagating through the sample.
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