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In this paper, we study modulation instabilities (MI) in a one-dimensional chain configuration of a flexible
mechanical metamaterial (flexMM). Using the lumped element approach, flexMMs can be modeled by a coupled
system of discrete equations for the longitudinal displacements and rotations of the rigid mass units. In the
long wavelength regime, and applying the multiple-scales method we derive an effective nonlinear Schrödinger
equation for slowly varying envelope rotational waves. We are then able to establish a map of the occurrence of
MI to the parameters of the metamaterials and the wave numbers. We also highlight the key role of the rotation-
displacement coupling between the two degrees of freedom in the manifestation of MI. All analytical findings
are confirmed by numerical simulations of the full discrete and nonlinear lump problem. These results provide
interesting design guidelines for nonlinear metamaterials offering either stability to high amplitude waves, or
conversely being good candidates to observe instabilities.
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I. INTRODUCTION

In the context of nonlinear waves, flexible mechanical
metamaterials have recently emerged as a rich and versatile
platform, opening the way for fundamental studies and poten-
tial applications [1]. Such flexible mechanical metamaterials
(flexMMs) can be defined as artificial compliant structures
able to support large deformations and mechanical instabili-
ties leading to new modes of functionality [2]. As a result, a
plethora of original quasi-static behaviors and functions have
already been reported, with applications to soft robotics [3],
structure reconfigurability [4], or mechanical logic devices
[5–7], as examples. In addition and more recently, the study
of their dynamic properties has revealed that the nonlinearity
is most often geometric in nature, resulting from large local
deformations, which makes the nonlinear dynamic response
governed by the architecture and therefore controllable [1].
This latter possibility opens the way to targeting specific dy-
namical properties, which have been known to be described
by existing fundamental equations (such as nonlinear Klein-
Gordon equations found in [8]) or which could illustrate and
reveal new relevant dynamic equations. FlexMMs have also
the potential of offering realizable configurations for testing
exciting concepts or processes such as those encountered in
time crystals [9,10], in active metamaterials [11,12] or for
micropolar elasticity of mechanical metamaterials [13].

Up to now, the specific behaviors of the reported flexMM
designs could be accurately modeled as rigid units able to
translate and rotate, connected with highly compliant springs
of longitudinal, shear, and bending nature. On the one hand,
the derived nonlinear and discrete equations of motion for
multiple degrees of freedom can be efficiently solved by
numerical integration [1]. On the other hand, several steps
towards analytical solutions can be taken, including the con-
sideration of periodicity, long wavelength compared to the
lattice period, expansions to first order nonlinear and disper-

sive terms, for instance. A review of the main nonlinear wave
processes and corresponding equations in flexMM reported
to date can be found in [1]. These include among others the
observation of mechanical vector solitons, their interactions
and tuning [1,8,14], the observation of cnoidal waves [15]
and of transition waves [4–7]. However, nonlinear modulated
waves in flexMM is an unexplored field. Many interesting
wave phenomena are expected to be revealed, including the
manifestation of modulation instability (MI) and the resulting
formation of localized waves such as envelope solitons or
breathers [16–18]. Beyond these fundamental interests, under-
standing the continuous waves dynamics of non-linear flexible
metamaterials is a key step before analyzing driven-damped
problems and implementing these for practical applications
as, e.g., vibration damping or energy harvesting, where peri-
odic signals are often encountered.

The phenomenon of MI has attracted a significant research
interest in a range of different wave systems, both continuum
(water surface [19–21], plasmas [22], optical fibers [23,24],
Bose–Einstein condensates [25]) and discrete (electrical trans-
mission lines [26], granular chains [27]) described by the
universal nonlinear Schrödinger equation (NLSE) [28–30].
MI analysis conventionally describes the early (linear) stage
of the exponential growth of perturbations of an unstable
plane wave background [23,24,31–34]. Recently, a renewed
interest in MI has appeared, motivated by the search for
extreme waves, and has led to the analysis of various ini-
tial conditions not limited to plane waves as well as to the
study of the subsequent nonlinear stages of instability beyond
the initial linear stage. [35–37]. Along these lines, numerous
theoretical and experimental works in water wave tanks and
optical fibers appeared in the literature [18,20,21,27,38–44].

It is the main objective of this paper to study the phe-
nomenon of MI in nonlinear flexMM. To do so, starting from a
discrete, nonlinear lump model, which was found to describe
well the dynamics of flexMM, we derive a NLS equation for
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FIG. 1. (a) Sketch of the chain configuration periodic flexMM under consideration. It is composed by two rows of rigid mass units (gray
squares) linked by elastic connectors (thick, blue lines) extending along x-direction with a lattice constant α. The rigid units can be of various
shapes (for example crosses, spheres, cubes) and are characterized by a mass m and a moment of inertia J . The elastic bonds (for example highly
flexible plastic films) are characterized by three effective stiffness. We consider symmetric movements relative to the horizontal symmetry axis
of the system. The displacements of the n and n − 1 particles from the equilibrium position are shown in (b) and (c) for the two different
considered cases. In (b) the mass units can only rotate, case (I) while in (c), the mass units can both rotate and longitudinally translate,
case (II).

the slowly varying envelope of waves of the rotational de-
gree of freedom. Then, we analyze under which conditions,
modulation instability of plane waves emerges by random
perturbations. We finally compare the theoretical results with
numerical simulations of the full nonlinear lump model. We
show that, via an initial condition problem, the coupling
between the degrees of freedom of the particles as well as
the mechanical parameters of the metamaterial (see Sec. II),
can allow modulation instability to occur and under which
conditions. Note that in this theoretical and numerical study,
damping is not considered. The latter is expected to affect
substantially the dynamic behavior of flexMM subjected to
continuous excitation in experiments, and requires to solve
driven-damped problem types. Such problems are beyond the
scope of this article but could constitute the next steps in order
to fully describe experimental results and lead to applications.

II. PROPERTIES AND MODELING OF THE CONSIDERED
FLEXIBLE MECHANICAL METAMATERIAL

A. Problem position and modeling of the structure

The considered structure is inspired from the flexible
LEGO® chain implemented in Ref. [14] and it consists of
rigid units (an assembly of LEGO® bricks), that are linked
to the next neighbors by highly flexible plastic films. A pe-
riodic chain can then be constructed by connecting pairs of
units along one direction as shown in Fig. 1(a). The plastic
films connecting the rigid bodies are physically modeled by
massless springs. Three springs are needed to represent the
plastic films connections, a longitudinal spring with stiffness

kl , a shear spring with a shear stiffness ks, and a bending
spring with a bending stiffness kθ . Two rows of masses were
originally used in Ref. [14] because this chain configuration
possesses a symmetry axis ensuring symmetry of the motion
and no experimental buckling of the chain out of this axis.
The motion takes place in the plane of the chain and in the
general case, each mass should have three degrees of free-
dom, one rotation and two displacements. In the context of
soliton propagation [8,14], it has been shown numerically and
experimentally that ignoring the transversal displacement is
a reasonable assumption. Indeed, the numerically and exper-
imentally observed transversal displacement amplitude is an
order of magnitude smaller than the longitudinal one. A two
degree-of-freedom (dof) model was therefore used for this
system, and could be used as a starting point for obtaining
relevant analytical solutions.

In the present study, we also ignore the transversal dis-
placements and we consider two cases. Case (I), Fig. 1(b),
where each rigid unit is free only to rotate (thus is described
by one dof θ ), and case (II), Fig. 1(c), where each rigid unit
both rotates and is longitudinally displaced (thus is described
by two dofs θ and u). Based on the mirror symmetry of the two
lines configuration along the y-axis, we look for symmetric
excitations for which the two rigid units of each column move
along x with the same amount and rotate at an opposite angle.

As done in [14], a positive direction of rotation is from
now on defined alternately for neighboring units since the
natural rotation is alternated, upon static compression or
long-wavelength propagation. The corresponding normalized
equations of motion for the nth column are then written
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[14]

∂2Un

∂T 2
= Un+1 − 2Un + Un−1 − cos θn+1 − cos θn−1

2
,

1

α2

∂2θn

∂T 2
= −Kθ (θn+1 + 4θn + θn−1)

+ Ks cos θn[sin θn+1 + sin θn−1 − 2 sin θn]

− sin θn[2(Un+1 − Un−1) + 4 − 2 cos θn

− cos θn+1 − cos θn−1], (1)

where we have introduced the following normalized variables
and parameters: the longitudinal displacement of unit n, Un =
un/a, the normalized time T = t

√
kl/m, an inertial parameter

α = a
√

m/(4J ), and stiffness parameters Kθ = 4kθ /kla2 and
Ks = ks/kl . Above, m and J are the mass and the moment
of inertia of the rigid units, while a is the unit cell length
(distance between the centers of the masses).

B. Discrete dispersion relations

A particularity of this system, compared to other mechan-
ical chains with two dofs [45–49], is that in the linear limit,
the two motion (displacements and rotations) are decoupled,
i.e., each degree of freedom follows its own dynamics, inde-
pendent of the other (see Appendix A).

The corresponding dispersion relations are given by,

ω(1) = 2 sin
(qa

2

)
, (2)

ω(2) = ±
√

4α2(Ks − Kθ ) sin2
(qa

2

)
+ 6α2Kθ . (3)

The first branch, Eq. (2), describes propagating longitudi-
nal waves with the typical monoatomic dispersion relation.
The second branch, Eq. (3), describes propagating rotational
waves with a Klein-Gordon type dispersion relation and a
lower cutoff frequency at ω = α

√
6Kθ . From Eq. (3), it is

clear that the dispersion relation of the structure can be highly
tuned through the inertial parameter α (changing the mass
and the shape of the rigid particles) as well as the stiffness
parameters Ks, Kθ (changing the elastic parameters of the
plastic films). Four examples of the dispersion relation for
different values of the bending stiffness Kθ are shown in Fig. 2
with solid lines. The rest of the parameters are chosen to
be consistent with the literature [8,14,15,50]. Note also that
the concavity of the dispersion relation for the rotation dof
is defined by the sign of δ = Ks − Kθ , see Figs. 2(a), 2(b)
vs 2(b), 2(d). As we explain below, the sign of δ plays a key
role in the stability of the plane waves in the system.

C. Continuum limit

Considering waves with wavelengths that are sufficiently
larger than the unit cell distance, i.e., λ � a, one can employ
the continuum limit approximation. Therefore, we define two
continuous functions U (X, T ) and θ (X, T ), interpolating the
displacement and rotation of the nth pair of rigid units located
at the position xn = na, where n is an integer, such that

U (Xn, T ) = Un(T ), θ (Xn, T ) = θn(T ), Xn = xn

a
. (4)

FIG. 2. Dispersion relations of Eqs. (2)–(3) (solid lines) and of
the continuum approximation (dashed lines) following Eqs. (7)–(8).
In all the examples, we fix the coefficients α = 2.5, Ks = 0.01851
and we vary Kθ . (a) Kθ = 1.534.10−4, (b) Kθ = 0.1, (c) Kθ =
0.01551, and (d) Kθ = 0.02151. Left (right) panels correspond to
δ > 0 (δ < 0).

If we further assume weak nonlinearity, namely θ � 1, keep-
ing terms up to θ3, see also [8,14], Eqs. (1) yield,

∂2U

∂T 2
= ∂2U

∂X 2
+ θ

∂θ

∂X
, (5)

∂2θ

∂T 2
= C1

∂2θ

∂X 2
− C2θ − C3θ

3 − C4θ
∂U

∂X
, (6)

where C1 = α2[Ks − Kθ ], C2 = 6Kθα
2, C3 = 2α2, and C4 =

4α2. The system of equations (5)–(6) is a simple dispersion-
less wave equation for the displacement field U , Eq. (5),
coupled through a nonlinear term, with a Klein-Gordon equa-
tion for the rotation field θ , Eq. (6). Pulse soliton solutions of
Eqs. (5)–(6) were theoretically obtained and experimentally
observed in [14], revealing the validity of the continuum cou-
pled equations.

The linear dispersion relations of Eqs. (5)–(6) are given by,

ω(1) = k, (7)

ω(2) =
√

C1k2 + C2, (8)

and they are shown in Fig. 2 with dashed lines. For the cases
we plot, one can see that as long as the wave number qa � 1,
the continuum equations capture well the dispersive charac-
teristics of the discrete model.

III. MODULATED WAVES IN flexMM

Although there are several recent studies on pulse non-
linear waves, the existence, stability, and propagation of
nonlinear modulated waves, in the form of plane waves or
wavepackets in flexMM remain unexplored. Only recently,
the existence and stability of discrete breathers in flexMM
was explored [51]. Here, we derive the theoretical framework
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for the description of long-wave, nonlinear modulated waves.
For this purpose, we apply below the multiple-scales method
[29,52] to Eqs. (5)–(6).

A. Multiple scales

We are looking for U and θ , in the form of a perturbative
expansion,

U =
N∑

i=1

εiui(X0, . . . XN , T0, . . . TN ),

θ =
N∑

i=1

εiθi(X0, . . . XN , T0, . . . TN ),

(9)

where Ti = εiT and Xi = εiX , with i = 0, 1, . . . , N and ε rep-
resents a small parameter. X0 and T0 correspond to the original
“fast” spatial and temporal scales of the carrier wave, while Xi

and Ti with i �= 0 define progressively the “slow” spatial and
temporal scales of the envelope.

By inserting the expansions of Eq. (9) into the system of
Eqs. (5)–(6), and taking into account the derivative operators
of the new spatial and temporal variables [see Appendix B
Eqs. (B1)], we end up with the following hierarchy of equa-
tions at successive orders of ε,

O(ε1)

L̂(1)
0 u1 = 0,

L̂(2)
0 θ1 = 0,

O(ε2)

L̂(1)
0 u2 = −L̂(1)

1 u1 + M̂(1)
0 θ2

1 ,

L̂(2)
0 θ2 = −L̂(2)

1 θ1 + θ1M̂(2)
0 u1,

O(ε3)

L̂(1)
0 u3 = −L̂(1)

1 u2 − L̂(1)
2 u1 + M̂(1)

1 θ2
1 + 2M̂(1)

0 θ1θ2,

L̂(2)
0 θ3 = −L̂(2)

1 θ2 − L̂(2)
2 θ1 + M̂(3)θ3

1 + θ1M̂(2)
0 u2

+ θ1M̂(2)
1 u1 + θ2M̂(2)

0 u1, (10)

where the linear operators, L̂(i)
j and M̂(i)

j , applied to the linear
and nonlinear terms of Eqs. (5) and (6), respectively, are
defined in Appendix B Eqs. (B2).

The first set of equations (10) of order O(ε), corresponds
to the linearized system of Eqs. (5)–(6). Using the fact that in
the linear regime the two fields are decoupled, we will focus
on the particular case which, at the leading order, there is only
rotational motion, i.e.,

u1 = 0,

θ1 = B(X1, T1, X2, T2, ...)e
i(kX0−ωT0 ) + c.c.,

(11)

with ω and k satisfying the dispersion relation Eq. (8) and c.c.
stands for the complex conjugate.

Let us proceed to the next order of the perturbation scheme,
O(ε2), and substitute the solutions (11) into the second set of

equations (10) to obtain,

L̂(1)
0 u2 = M̂(1)

0 θ2
1 ,

L̂(2)
0 θ2 = −L̂(2)

1 θ1.
(12)

The right-hand-side of the last equation is a secular term, as
it acts as a source term proportional to eiσ (σ = kX0 − ωT0)
with which the linear operator L̂(2)

0 on the left is in resonance.
This implies that the solution θ2 would blow up as t → ∞
and thus the perturbation scheme will fail. The only way for
the expansion to be bounded is to set the secular term to zero,
which translates to the following relation for the envelope
function B:

D1B + vgD1X B = 0. (13)

Here, we have introduced the group velocity given by

vg = C1k√
C1k2 + C2

= C1k

ω
. (14)

Once the secular term is removed, the system of equations of
the second order in ε in Eq. (10) is now reduced to

L̂(1)
0 u2 = ikB2e2iσ + c.c.,

L̂(2)
0 θ2 = 0.

(15)

The first equation has the following solution:

u2 = ikB2

4(k2 − ω2)
e2iσ + c.c., (16)

where the homogeneous part of the solutions is omitted due to
our choice of initial conditions U (0, X ) = U̇ (0, X ) = 0. For
θ2 we choose the trivial solution, i.e., θ2 = 0, since any other
solution can be incorporated in B.

B. Nonlinear Schrödinger equation (NLSE)

We now proceed with the O(ε3) order of the perturbation
scheme. By using u1 = 0 and θ2 = 0, as discussed above, the
last equation of Eq. (10) is reduced to

L̂(2)
0 θ3 = −L̂(2)

2 θ1 + M̂(3)θ3
1 + θ1M̂(2)

0 u2. (17)

Similar to the previous order, there are secular terms in the
right-hand side of Eq. (17) proportional to eiσ : the L̂(2)

2 θ1,
and parts of the M̂(3)θ3

1 and θ1M̂(2)
0 u2 terms. To find their

secular contributions, we develop the operators as well as the
functions on which they are applied. For the first of them,

M̂(3)θ3
1 = −C3B3e3iσ − 3C3|B|2Beiσ + c.c., (18)

the secular contribution is −3C3|B|2Beiσ . For the next one,

θ1M̂(2)
0 u2 = C4k2B3

2(k2 − ω2)
e3iσ + C4k2|B|2B

2(k2 − ω2)
eiσ + c.c., (19)

the secular contribution is C4k2|B|2B
2(k2−ω2 ) eiσ . To avoid the resonant

driving we set all the secular terms equal to zero Eqs. (17),
(18), (19),

L̂(2)
2 θ1 +

(
3C3 − C4k2

2(k2 − ω2)

)
|B|2Beiσ = 0. (20)
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It is possible to simplify this expression Eq. (20) by using
the variables ξi = Xi − vgTi, τi = Ti, i.e., a reference frame
moving with the group velocity. Within this frame Eq. (13),
becomes ∂B/∂τ1 = 0 and Eq. (20) leads to the following
nonlinear Schrödinger (NLS) equation,

i
∂B

∂τ2
+ g1

2

∂2B

∂ξ 2
1

+ g2|B|2B = 0. (21)

Equation (21) describes the evolution of the envelope B of the
modulated rotational waves, in the co-moving space variable
and the second order slow time.

The coefficients g1 and g2 are given by the following ex-
pressions,

g1 = C1 − v2
g√

C1k2 + C2

,

g2 = − 1

2
√

C1k2 + C2

(
3C3 + C4k2

2k2(C1 − 1) + 2C2

)
.

(22)

Furthermore, Eq. (21) can be rewritten as a function of a sin-
gle nonlinear parameter g = g2/g1 by applying the following
change of variable τ̃2 = g1τ2,

i
∂B

∂τ̃2
+ 1

2

∂2B

∂ξ 2
1

+ g|B|2B = 0. (23)

In its current form, the NLS equation has two distinct behav-
iors depending on the sign of the nonlinearity coefficient: it
is known as focusing when g > 0 and defocusing for g < 0.
Among other different properties between these two cases,
an important one is the stability of plane wave solutions.
More precisely, for the focusing case, it is known that plane
waves are subject to modulational instabilities [18,32,33,53–
56], which is the main interest of the present work. Therefore,
below we establish the conditions under which MI appears in
the proposed flexMM.

C. Modulation instability (MI)

We seek solutions of Eq. (23) in the form of a perturbed
plane wave [16],

B(ξ1, τ̃2) = (A0 + b(ξ1, τ̃2))ei(k0ξ1−ω0 τ̃2+θ̃ (ξ1,τ̃2 )), (24)

with b the amplitude and θ̃ the phase of small perturbations.
The unperturbed plane wave satisfies the dispersion relation,

ω0 = k2
0

2
− gA2

0. (25)

Inserting Eq. (24) into Eq. (23), we find at first order a set of
linear equations for the perturbations b and θ̃ . We thus assume
harmonic solutions of the form,

b = f1ei(Kξ1−�τ̃2 ), θ̃ = f2ei(Kξ1−�τ̃2 ), (26)

where the perturbation frequency � and wave number K fol-
low the dispersion relation,

� = Kk0 ± |K|
√

K2

4
− gA2

0. (27)

We can now identify two different regions of stability of the
plane waves. On the one hand, where g < 0 the perturba-

tions are oscillating functions and remain bounded. Thus we
call this region modulational stable. On the other hand, for
g > 0 there exists a band of unstable wave numbers satisfying
K < Kc where,

|Kc| = 2A0
√

g, (28)

resulting in a complex frequency � = �R ± i�I with,

�R = Kk0, �I = |K|A0

√
g − K2

4A2
0

. (29)

We call this region modulational unstable. The small unstable
wave numbers lead to an exponential growth of the pertur-
bations, with a growth rate �I . Thus any perturbation with
wave numbers within the instability band should lead to MI.
Another important parameter for studying MI is the wave
number with the maximum growth rate,

|Km| = A0

√
2g. (30)

We notice that both the critical wave number Kc and the
wave number corresponding to the fastest growth rate of the
perturbations Km depend on the parameter g and the initial
amplitude A0.

1. Parametric study of the coefficient g

It is now clear that the stability of modulated waves in the
flexMM depends on the sign g. As already discussed in Sec. II,
we study two distinct cases: (I) allowing only rotations and (II)
with two dofs per unit, i.e., including both rotation and longi-
tudinal displacement [Figs. 1(b) and 1(d)]. The corresponding
nonlinear coefficient g(δ, α, Kθ , k) for the two cases is
given by,

g = −3α2

δα2 − v2
g

, (31)

for case (I), and

g = −3α2

δα2 − v2
g

(
1 + k2

3k2(α2δ − 1) + 18Kθα2

)
, (32)

for case (II).
In practice, the sign of g is determined by the choice of the

carrier wave number k and the geometrical characteristics of
the flexMM. This shows the great flexibility that the proposed
system offers in order to manipulate weakly nonlinear waves.
In Fig. 3 we plot a map of the sign of g as a function of the
wave number k and δ. In all cases, white (respectively, black)
regions correspond to g > 0 (respectively, g < 0). From the
left panel, it is clear that for case (I) with only rotations, the
sign of g solely depends on the sign of δ. However for case
(II), things are different and the coupling between the rotation
and the longitudinal motion creates intermediate regions of
focusing and defocusing behavior depending also on the wave
number k. The different panels of Fig. 3 also show how these
regions “move” towards larger k by changing the value of the
inertia parameter α.

Another interpretation of the results plotted in Fig. 3 is that
the coupling between the rotations and longitudinal displace-
ments creates stripes of stability (black shaded regions) in the
otherwise unstable single dof lattice with only rotations [panel
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FIG. 3. Sign of the nonlinear coefficient g as a function of k and
δ, for α = 1.5, 2.5, 3.5. (a) corresponds to the case (I) while [(b), (c),
(d)] to case (II).

(a)]. At the same time this coupling forms regions of instabil-
ity (white) where solely rotational motion would have been
stable. Once again, this result shows the great tunability and
richness of the system regarding nonlinear wave propagation.

IV. NUMERICAL SIMULATIONS OF THE flexMM

In this section we use direct numerical simulations of the
system’s discrete equations (1), in order to verify our ana-
lytical predictions. In particular we first want to check the
stability of plane waves as this is predicted by the sign of g
(defocusing vs focusing) of the effective NLS. In addition,
in the case of modulational instability, we want to compare
the unstable generated wave number, according to the ones
that the MI analysis predicts. Furthermore, we use the nu-
merical simulations to uncover as well the dynamics of the
system long after the emergence of the MI. We thus solve
Eqs. (1) using a fourth order Runge-Kutta iterative integration
scheme for a total of N = 500 sites, using periodic boundary
conditions. We focus on the case with α = 2.5 [Fig. 3(a) and
3(c)] although any other choice of α could have been done in
principle.

As initial conditions, we apply plane waves on the rotations
only, with wave number k, whose amplitude is perturbed by a
random noise,

θ (n, 0) = 2ε(1 + b0) cos(kn),

θ̇ (n, 0) = 2εω(k)(1 + b0) sin(kn),
(33)

with ε = 0.01 and b0 ∈ [−10−3, 10−3] is a random number
taken from a uniform distribution. As mentioned above, in all
the cases we use U (n, 0) = U̇ (n, 0) = 0 for the longitudinal
displacements. Here, random noise was chosen as a perturba-
tion, not only because it is relevant to realistic experimental
conditions but also since it is an efficient way to excite all the
wave numbers including the unstable ones. Moreover, we can

FIG. 4. Most unstable wave number Km (color map) as a function
of δ and k for α = 2.5. In both panels, two particular points are
indicated: a blue square point for k = 0.81681 and δ = 0.003 and
a green circle point at the position k = 0.92991 and δ = −0.003.

confirm in this way our analytical results by identifying the
two characteristic wave numbers Kc and Km using Eqs. (28)
and (30) during the lattice dynamics simulation.

Here, we note the following technical point. Due to the
periodic boundary conditions, the spectrum is wrapped be-
tween [0; π ]. During the manifestation of the MI, we expect
to identify at least the following wave numbers: the carrier k,
and the most unstable wave number Km. However we know
that we always excite at least the third harmonics 3k. In order
for all these frequencies to be well identified, we thus choose
parameters such that the k + εKm is smaller than 3k. To do so,
we use an alternative representation of Fig. 3, using as color
map the values of Km. The two points denoted by squares
and circles in left and right panels, respectively, are the two
examples that we will study in details below.

A. Inducing MI by coupling the rotations with displacements

We first focus on a point, in the parameter space spanned
by δ and k, indicated by the square in Fig. 4. This corresponds
to the plane wave wave number k = 0.81681 and δ = 0.003.
We fix from now the value of α = 2.5. As a reminder, the
values of δ fixes the difference between shear and bending
stiffness (δ = Ks − Kθ ), while the value of α the ratio of mass
to moment of inertia of the particles.

According to the theory, this point is described by a de-
focusing NLSE (g < 0) for case (I). Thus, the plane wave
is supposed to be stable. In contrary, when both the dof are
considered, i.e., case (II), and for exactly the same parameters,
the plane wave becomes modulationally unstable, since the
system is described by a focusing NLSE (g > 0). To confirm
our theoretical prediction, we solve the discrete system of
Eqs. (1) using the initial conditions (33). In Fig. 5, we show
the results for case (I). Here, both the evolution of the rotation
[panel (a)] and its space Fourier transform [panel (b)] indeed
show that a random perturbation on an initial plane wave
remains bounded, thus the plane wave is stable.

The rotations θn show small amplitude oscillations in time
with a frequency ω, following the dispersion relation Eq. (8)
at the given k. Even after more than 500 oscillations, only the
wave number of the carrier wave is present in the spectrum,
indicating the stability.

For the exact same flexMM and the same initial condition,
if we allow the coupling between the two dofs, namely if we
consider case (II), the dynamics is radically different. This
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FIG. 5. (a) represents the evolution in time (T ) of the absolute
value of the rotation amplitude along the chain (N). (b) represents
the evolution in time of its k-spectrum. The results correspond to
case (I), blue square point (k = 0.81681, δ = 0.003).

FIG. 6. [(a),(c)] represent the evolution in time (T ) of the ab-
solute value of the rotation and displacement amplitudes along the
chain (N). [(a),(c)] represent the evolution in time of the k-spectrum
for the rotation and longitudinal displacement. The results corre-
spond to case (II)—blue square point (k = 0.81681, δ = 0.003).

FIG. 7. (a) represents the evolution in time (T ) of the absolute
value of the rotation amplitude along the chain (N). (b) represents
the evolution in time of its k-spectrum. The result correspond to case
(I), green circle point (k = 0.92991, δ = −0.003).

FIG. 8. [(a),(c)] show the evolution in time (T ) of the absolute
value of the rotation and displacement amplitudes along the chain
(N). [(b),(d)] show the evolution in time of the k-spectrum for the
rotation and longitudinal displacement. The results correspond to
case (II), green circle point (k = 0.92991, δ = −0.003).
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FIG. 9. (a) and (b) show the theoretical modulational instability band for the blue point in case (II), the green point in case (I) and for two
different amplitudes A0. In (c) and (d), we plot the Fourier transform of the θ , corresponding to the parameters of the blue square (respectively,
green circle) at two different instances. For case (II), we choose t = 2500 for A0 = 0.8 and t = 1100 for A0 = 1.4. For case (II), t = 5000 for
A0 = 0.8 and t = 1700 for A0 = 1.4. The dotted lines correspond to the analytical values of kb/g + εKm, while the dashed ones to kb/g + εKc.
kb/g are the wave numbers of the initial plane waves and K the wave number of the perturbation.

scenario is shown in Fig. 6. As predicted by the theory, the
wave numbers of the perturbation that belong to the instability
band start growing. This is clear by the two sidebands that
are developed symmetrically around the excited wave number
k = 0.81681 in panel (b) of Fig. 6. More precisely, the center
of these side bands corresponds to the point k ± εKm since the
most unstable wave number rises first. The generation of these
wave numbers is directly revealed on the rotations as large
amplitude localized structures appear [see Fig. 6(a)]. For later
times, after the instability kicks in, and when the amplitude
of the rotations becomes large enough, we observe a spectrum
with many excited wave numbers.

In this case, since rotations are coupled to the longitudinal
displacements Un, we expect to see some dynamics in the
displacements too. Indeed, as expected from our analysis in
Eq. (16), U starts oscillating with a wave number 2k as shown
in Fig. 6(d), and at later times following the evolution of θ ,
larger amplitude modulated waves are also emerging in the
displacements Un.

B. Stabilizing plane waves using the coupling of dofs

The second configuration which we focus on is the “com-
plementary” one. It corresponds to the green circles in Fig. 4,
where the uncoupled system (case I) is described by a focus-
ing NLS, thus we expect the plane waves to be modulationally
unstable, while by allowing the coupling between the two dofs
(case II), the effective NLS is focusing and thus, the plane
waves are stable. To confirm these theoretical predictions,
we use the same initial conditions as in Eq. (33) but with
k = 0.92991 and δ = −0.003 and we solve again numerically
the system of Eqs. (1). The result of case (I) is shown in Fig. 7.
Following our analysis, the numerical simulations confirm
that an initially perturbed plane wave develops initially the
expected side branches at k ± εKm. At the final steps of the
simulation, all the wave numbers are excited. On the other

hand, when both dofs are present [case (II)] and for exactly the
same parameter values, the corresponding numerical result,
shown in Figs. 8(a)–8(b), verifies the stability of the plane
wave solution. We see that for the same total time of propaga-
tion as in the decoupled case, θ shows stable oscillations with
a wave number k while U oscillates at 2k, as per the theory.

C. MI growth rate: Theory vs numerics

To further support our theoretical findings we perform nu-
merical simulations, for both cases, by varying the amplitude
of the initial excitation A0, and we compare the predictions of
the MI linear stability analysis [see Eqs. (28)–(30)], with the
early stage of the MI manifestation in simulations.

In particular, in Figs. 9(a) –9(b), we plot the MI growth rate
for both cases and for two different amplitudes A0. The dotted
lines correspond to the analytical values of k + εKm, while the
dashed ones to k + εKc. In Figs. 9(c)–9(d), we plot the Fourier
spectrum of the rotation field θ at times that correspond to the
early stage of MI. In both cases a stronger initial excitation re-
sults in a larger unstable band showing a maximum shifted to
larger k values. Note also how well the theoretically predicted
bandwidth, Figs. 9(a)–9(b), matches the numerically obtained
bandwidth. This observation constitutes another more quanti-
tative validation of the derived effective NLS description.

V. CONCLUSIONS

FlexMM are mechanical structures with some unique fea-
tures, including the geometrical nonlinearity coming from the
large rotations of the building blocks, the presence of several
dofs that are nonlinearly coupled, and the great tunability of
the dispersion relation. Therefore, flexMMs offer a perfect
experimental platform to explore a plethora of nonlinear wave
phenomena.
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In this paper, we focused on the archetypal nonlinear
phenomenon of MI. To that end, starting from a discrete, non-
linear lump model, that has been proved to accurately describe
their dynamics, we first derived a NLS equation for slowly
varying rotational envelope waves. We then studied the sta-
bility of the rotational plane waves to small perturbations via
the MI analysis for the derived NLS. Analytical and numerical
results revealed that, under proper values of the physical pa-
rameters of the flexMM, namely under some particular values
of the inertia and stiffness parameters, it is possible to observe
MI in these flexMMs. More importantly, we have analyzed the
role of the coexistence of two dofs. In particular, the interplay
between the two dofs can lead to regions of stability, in an
otherwise unstable flexMM which supports only rotations,
i.e., only one of the two dofs, and vice versa.

This work constitutes an attempt to understand more gener-
ally the dynamics of modulated waves in nonlinear flexMMs.
Several natural extensions of this work include the initial ex-
citation of both rotational and longitudinal modulated waves,
leading to a coupled NLS with a much richer MI dynamics, as
well as the study of the discreteness when shorter modulated
waves are considered, along the lines of [57,58]. Both aspects
are currently under investigation and results will be presented
in future publications. Other interesting perspectives are the
generation and dynamics of coherent structures like Peregrine
breathers and extreme wave effects in nonlinear flexMMs.
We believe that the present work reveals the great potential
that nonlinear flexMMs have, for the observation and control
of both typical and novel nonlinear phenomena related to
modulated waves.

However, prior to test experimentally these results on
modulated continuous waves or implement related effects in
applications of non-linear waves in flexMM, the next neces-
sary step is to consider and model dissipation. The obtained
results have the ability to guide the analysis of similar systems
in the driven-damped case, but the observations are expected
to be essentially different in the presence of damping.
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APPENDIX A: DISPERSION RELATION

The dispersion relation of the metastructure is obtained
by linearizing the motion equations (sin θ ≈ θ ) and assuming
that the chain is excited by a harmonic source of ω pulsation,
propagating along increasing x. The harmonic solutions of the
linear system are represented by these three vectors, when one
poses xi = ia, xi±1 = (i ± 1)a:


φi =
[
Ui

θi

]
=

[
U0

θ0

]
e j(ωt−qxi ) =

[
Ui

θi

]
,


φi+1 =
[
Ui+1

θi+1

]
=

[
U0

θ0

]
e j(ωt−qxi+1 ) =

[
Ui

θi

]
e− jqa, (A1)


φi−1 =
[
Ui−1

θi−1

]
=

[
U0

θ0

]
e j(ωt−qxi−1 ) =

[
Ui

θi

]
e+ jqa.

By substituting these harmonic solutions in the linearized
equations, we obtain the eigenvalue problem

[M]−1[K] 
φ = λ 
φ (A2)

with λ = ω2 the eigenvalue and 
φ = [U0
θ0

] the eigenvector, and

[M] =
[

1 0
0 α−2

]
,

[K] =
[

2(1 − cos(qa)) 0
0 −2δ cos(qa) + 2(Ks + 2Kθ )

]
.

(A3)

The coupling between modes comes from the anti-diagonal
terms of the K matrix. Since all mass units are aligned at the
initial time, these anti-diagonal coefficients are zero, so the
modes are decoupled.

APPENDIX B: MULTIPLE SCALES

The different scales imply that the differentials of X and T
must be redefined according to the different scales Xi and Ti

used. By defining the notation Di = ∂
∂Ti

and in an analogous

way DiX = ∂
∂Xi

, we can write

∂2

∂T 2
= (D0 + εD1 + ε2D2 + · · · )2

= D2
0 + 2εD0D1 + ε2

(
D2

1 + 2D0D2
) + · · · ,

∂2

∂X 2
= (D0X + εD1X + ε2D2X + · · · )2

= D2
0X + 2εD0X D1X + ε2

(
D2

1X + 2D0X D2X
) + · · · .

(B1)

The operators L̂(i)
j and M̂(i)

j are given by the following
expressions:

L̂(1)
0 = D2

0 − D2
0X ,

L̂(2)
0 = D2

0 − C1D2
0X + C2,

L̂(1)
1 = 2(D0D1 − D0X D1X ),

L̂(2)
1 = 2(D0D1 − C1D0X D1X ),

L̂(1)
2 = D2

1 − D2
1X + 2D0D2 − 2D0X D2X ,

L̂(2)
2 = D2

1 − C1D2
1X + 2D0D2 − 2C1D0X D2X , (B2)

M̂(1)
0 = 1

2 D0X ,

M̂(2)
0 = −C4D0X ,

M̂(1)
1 = 1

2 D1X ,

M̂(2)
1 = −C4D1X ,

M̂(3) = −C3.
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