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A B S T R A C T

Zero Group Velocity (ZGV) modes are peculiar guided waves that can exist in elastic plates or cylinders,
and have proved to be very sensitive tools in characterizing materials or thickness variations with sub-
percent accuracy at space resolutions of about the plate thickness. In this article we show theoretically and
experimentally how such a mode can be generated as the sum-frequency interaction of two high amplitude
primary waves, and then serve as a local probe of material non-linearity. The solutions to the phase matching
condition, i.e. condition for a constructive non-linear effect, are obtained numerically in the mark of classical,
quadratic non-linearity. The coupling coefficients that measure the transfer rate of energy as a function of
time from primary to secondary modes are derived. Experiments are conducted on an aluminum plate using
piezo-electric transducers and a laser interferometer, and explore the interaction for incident symmetric and
anti-symmetric fundamental Lamb modes. In an experiment operated without voltage amplifier we demonstrate
that the resonant nature of these ZGV modes can be leveraged to accumulate energy from long excitations
and produce detectable effects at extraordinarily low input power even in such weakly non-linear material.
1. Introduction

Nonlinear ultrasonics in non-destructive testing has received con-
siderable interest in the last decades owing to its promise to detect
material degradation at much earlier stages than linear techniques
do [1].

As one among other non-linear effects that have shown great sen-
sitivity to micro-structural changes, harmonic generation is often the
ground of a strategy to interrogate a medium [2]. In this context,
appealing guided wave based techniques have emerged [3–6], although
their development has been hindered by the complexity of wave prop-
agation in these structures which adds to the other difficulties that any
non-linear based method must cope with. Indeed, due to dispersion, the
phase matching condition without which no significant magnitudes are
attained is in general not fulfilled for collinear interaction, except at
some very specific combinations of modes and frequencies that have to
be carefully identified [7,8], and among which only few are at reach
in practice given the state of the art in transduction.

In an attempt to broaden the design space of this class of methods,
recent works have begun to explore the new possibilities offered by
non-collinear mixing [9–13]. Non-collinear mixing is the name given
to the phenomenon of harmonic generation when the two primary
waves come from different directions. Although well known [14–17]
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and with identified advantages applied in non-destructive evaluation
in the case of bulk waves (see e.g. [18,19]), and despite pioneer
experimental demonstrations in plates in the 70s [20,21], this effect has
remained out of focus for Lamb waves until the articles cited above.
The benefits of non-collinear mixing are in general that it allows an
easier separation between system and sample non-linearity. In the case
of guided waves, the other benefit is that the solutions to the phase
matching condition are tremendously more numerous, allowing most
modes to be generated by a well chosen pair of primary waves. We
show in this article how a zero group velocity mode can be excited this
way.

Waves having zero group velocity (ZGV) and non-zero wavenumber
can exist in elastic waveguides. They behave like thickness resonances
although, due to their finite wavelength (about the plate thickness),
they remain strongly localized in space and can serve as local probes
of sample properties (e.g. defects [22], thickness changes [23–26],
mechanical constants [27–30], bonding [31–33]) with a single point
measurement. Owing to their high quality factor, these modes are usu-
ally relatively easy to generate and can be detected at great precision
with non-contact setups. For instance, 𝑄 ≈ 15000 was reported [23] in
aluminum alloys, which enabled detecting and mapping [23,24] rela-
tive thickness variations as small as 2 × 10−4. Successful applications
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in non-destructive testing were reported with air-coupled transducers in
the 150 − 250 kHz range [22], or with laser ultrasonics from MHz [23–
1,33–36] to GHz [32] frequencies, covering thicknesses down to
onded nanostructures [32]. One noticeable exception to the contact-
ess detection that is usually required is found in civil engineering
the ‘‘impact-echo’’ technique [37]) where, due to the small size of
he sensors regarding the thickness of the walls being probed, contact
etection can be meaningful without significantly affecting the modes.
astly, let us also mention that ZGV modes have led to the design
f high-Q micro resonators, either optical [38] or mechanical [39]
or electroacoustic components. Insights on the ranges of existence of
GV modes as a function of Poisson’s ratio can be found in Ref. [34].
ther aspects have been discussed such as the influence of boundary
onditions and layering [40], anisotropy [28], or their time decay
ehavior due to dispersion and material damping [35].

Altogether, these qualities make ZGV modes attractive candidates
o achieve new performances in evaluating the non-linear properties
f a medium or a bonded assembly [41–43]. However — except from
ef. [44] which explores theoretically self-action effects in the mark of
ysteretic non-linearity — reported works cover only linear properties.
ne obstacle regarding harmonic generation is that it is in general not
ossible to find a primary mode that collinearly satisfies the phase
atching condition with a ZGV mode as target. The natural way to

vercome this difficulty is to resort to non-collinear mixing. This is the
tarting point of the present article.

Let us give a brief illustration before going into details. Fig. 1 shows
setup in which two narrow-banded, high amplitude wave trains are

aunched in an aluminum plate in such a way that their wavevectors
nd frequencies sum to a ZGV point of the plate. After an interaction
ime of half a hundred cycles, the remaining field has a clear component
t the expected ZGV frequency.

This article is organized as follows. We first obtain the solutions
o the phase matching condition considering the ‘‘sum frequency’’
nteraction and the so-called S1S2 ZGV mode as target. This mode

is the lowest frequency and most widely known and exploited ZGV
mode that is supported by plates in a very wide range of Poisson’s
ratio, covering most engineering isotropic materials (metals, concrete,
plastics, etc.). We also derive and discuss the coefficients that quantify
the interaction between selected modes. We then describe experimental
realizations, the first two of which giving evidence of the phenomenon
for different choices in the primary modes. Finally, a third experiment
emphasizes one of the unique benefits that a ZGV mode can provide by
demonstrating detectable effects obtained at low driving amplitudes.

2. Theoretical background

2.1. General considerations

We recall here a few background results of non-collinear harmonic
generation in hyperelastic materials showing classical, quadratic non-
linearity. These results can be obtained by considering the equations
of motion for finite amplitudes in the perturbative approximation.
They were first derived for bulk waves [14–17] and are qualitatively
similar for guided waves [9,10] as the methodology to establish them
extends naturally. Non-collinear mixing is also possible for other types
of non-linearities, although it involves other angles, admissible sym-
metry pairings and harmonic orders — see Ref. [45] for bulk waves
and hysteretic quadratic non-linearity. Contact acoustics non-linearity,
another family of non-classical non-linearities, could also be relevant in
the future in the case of the non-linear and non-collinear interactions
at a crack [13,46].

Let us consider two primary displacement fields 𝐮1 and 𝐮2 propa-
gating in a plate made of such a material. 𝐮1 and 𝐮2 are assumed to be
monochromatic and composed of a single Lamb mode each:

𝐮 = Re
(

𝐴 𝐔 (𝑧)ei(𝜔1𝑡−𝐤𝑇1 𝐱)
)

, (1a)
2

1 1 1 d
able 1
Material constants representative of several aluminum alloys. The third order moduli
ere determined by R. T. Smith et al. [47] from acoustoelastic measurements.
Density Lamé’s Murnaghan’s

𝜌 𝜆 𝜇 𝑙 𝑚 𝑛

2.7 g∕cm3 58 24 −311 −401 −408 GPa
−224 −237 −276
−202 −305 −300
−388 −358 −320
−337 −395 −436

𝐮2 = Re
(

𝐴2𝐔2(𝑧)e
i(𝜔2𝑡−𝐤𝑇2 𝐱)

)

, (1b)

where the coordinate system 𝐱 = (𝑥, 𝑦, 𝑧)𝑇 is such that the free surfaces
of the plate are parallel to the (𝑥, 𝑦) plane, and with the convention
𝜔1 ≥ 𝜔2 > 0. The wave vectors 𝐤𝑖 are contained in the (𝑥, 𝑦) plane.
Both pairs (𝜔𝑖,𝐤𝑖) satisfy the dispersion relations of the plate and
are associated with mode shapes 𝐔𝑖. From the non-linear interaction
between 𝐮1 and 𝐮2 in the region where they intersect, small secondary
waves are produced whose amplitudes are proportional to the product
𝐴1𝐴2. If furthermore (𝜔1,𝐤1) and (𝜔2,𝐤2) satisfy the phase-matching
condition, that is, if their sum or difference

𝜔3 = 𝜔1 ± 𝜔2, (2a)
𝐤3 = 𝐤1 ± 𝐤2, (2b)

is such that (𝜔3,𝐤3) satisfies the dispersion relations of the plate, then
one mode,1 called 𝐮3, emerges from the secondary field. Its amplitude
grows in proportion with the interaction time 𝑡:

𝐮3 = Re
(

𝐴3(𝑡)𝐔3(𝑧)e
i(𝜔3𝑡−𝐤𝑇3 𝐱)

)

, (3a)

𝐴3(𝑡) = 𝐴1𝐴2 𝛾
(𝑡)
1,2,3 𝑡, (3b)

with 𝐔3 the mode shape related to (𝜔3,𝐤3), and 𝛾 (𝑡)1,2,3 a coupling constant
which depends on the triplet of modes and on the elastic constants of
the material — a derivation is given in Appendix A. In Eqs. (2), ‘‘+’’
and ‘‘−’’ signs correspond respectively to the ‘‘sum’’ and ‘‘difference’’
interactions (𝐴2 must be replaced by its conjugate 𝐴∗

2 for the ‘‘−’’ case).
Eq. (3b) is often written as a function of the propagation distance. Here
the choice of the time variable is made necessary by the ZGV modes in
which we are ultimately interested, which, because of their zero power
flux, would otherwise yield infinite terms.

The coupling constants 𝛾 (𝑡)123 are zero when triplets of inadequate
symmetries are involved, prohibiting several families of interactions.
A complete discussion can be found in [9,10]. For our specific case of
a target of P-SV symmetric type, the possible combinations are those of
two antisymmetric or two symmetric modes, regardless their belonging
to the P-SV or SH families.

2.2. System under interest

From here on in this theoretical section we consider a plate made of
a homogeneous and isotropic material, of thickness ℎ (see Fig. 2-d). The
material is modeled using elastic constants characteristic of aluminum
(see Table 1). For such Poisson’s ratio (𝜈 = 0.35), the S1S2 ZGV mode (or
merely ‘‘ZGV mode’’ for short) is around (𝜔𝑍𝐺𝑉 , 𝑘𝑍𝐺𝑉 ) ≈ (0.93𝑐𝑠, 0.25)×
2𝜋∕ℎ, with 𝑐𝑠 the shear wave velocity.

1 Note that there could in principle be more than one mode satisfying
he phase-matching condition simultaneously. Such exceptional cases are not
iscussed here.
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Fig. 1. (a) Schematic of the non-collinear interaction. (b) Photograph of the experimental setup. (c) Snapshot of the primary field arriving in the interaction region. (d)
Fourier-transform of the field remaining after the interaction at the ZGV frequency. (e) Spectrum for piezos #1 and #2 activated alone or simultaneously.
Table 2
Frequency ranges and minimum interaction angles for mode pairs of admissible types

giving solutions to the phase-matching condition for the generation of the S1S2 ZGV
mode as a sum interaction.

Primary modes Frequency range
(in units of 1

2
𝑓𝑍𝐺𝑉 )

Min. angle

S0 − S0 63%–137% 127◦

A0 − A0 73%–127% 155◦

SH0 − SH0 73%–127% 149◦

S0 − SH0 S0: 92%–150%
SH0: 50%–108%

139◦

A0 − A1 A0: 16%–70%
A1: 130%–184%

132◦

A0 − SH1 A0: 41%–81%
SH1: 119%–159%

144◦

2.3. Phase matching condition

Here we seek the solutions to Eqs. (2) for the sum interaction when
the target is the ZGV mode, i.e. (𝜔3, ‖𝐤3‖) = (𝜔𝑍𝐺𝑉 , 𝑘𝑍𝐺𝑉 ), and given
a phase direction that is arbitrarily set along the 𝑦 axis, i.e. 𝐤3∕‖𝐤3‖ =
(0, 1, 0)𝑇 .

Methodology. We first numerically obtain (see e.g. [48]) the dispersion
relations of the plate 𝜔𝑛(𝑘) and identify the modal branches that we
want to be considered as primary fields: e.g. the S0 branch for the
S0 − S0 → ZGV case. We vary 𝐤1 on a square grid [−𝑘𝑚𝑎𝑥, 𝑘𝑚𝑎𝑥] ×
[−𝑘𝑚𝑎𝑥, 𝑘𝑚𝑎𝑥] whose bounds 𝑘𝑚𝑎𝑥 are empirically set large enough to
obtain all solutions. At each test point of the grid, 𝐤2 = 𝐤3 − 𝐤1 is
deduced from Eq. (2b), and the sum angular frequency 𝜔+ = 𝜔1(‖𝐤1‖)+
𝜔2(‖𝐤2(𝐤1)‖) is stored. Finally, a contour finder [49] (the Marching
squares algorithm) is called to find the iso-values 𝜔+(𝐤1) − 𝜔3 = 0
and returns the admissible 𝐤1 vectors, from which the corresponding
admissible 𝐤2, angular frequencies 𝜔1 and 𝜔2, and interaction angles
arccos (𝐤𝑇1 𝐤2∕‖𝐤1‖ ‖𝐤2‖) can be post-treated.

Results. The methodology is applied to all possible primary pairings.
The results for the three most canonical cases A0−A0 → ZGV, S0−S0 →
ZGV and SH0−SH0 → ZGV are represented in Fig. 2. Solutions are also
found to the more exotic cases S0 − SH0 → ZGV, A0 − A1 → ZGV and
A0 − SH1 → ZGV and are summarized in Table 2. Other combinations
are either of wrong symmetry parity (e.g. A0 − S0 cannot generate a
symmetric mode) or start at frequencies above the target.

Fig. 2-a represents (thick lines) the portions of the fundamental
modal branches where the phase-matching condition can be satisfied
by a non-collinear arrangement. Triangles mark the lowest and highest
possible frequencies and correspond to a 180◦ interaction angle, while
circles mark the case 𝑓1 = 𝑓2 where the interaction angle is minimal.
Note that the interaction angle in this symmetric case can be easily
3

obtained by geometric considerations — it equals 2 arccos(𝑐1∕𝑐3), with
𝑐1 and 𝑐3 the phase velocities of primary and secondary waves. The
two ticks (blue line) correspond to 𝑓1, 𝑓2 = 1

2𝑓𝑍𝐺𝑉 ± 20%. Fig. 2-b
represents the complete set of admissible primary wavevectors — it is
actually the raw output of the contour finder. To help understanding,
the wavevectors corresponding to the points marked in Fig. 2-a are
drawn for the S0 − S0 → ZGV case. Finally, Fig. 2-c represents the
angle that must be set between 𝐤1 and 𝐤2, as a function of the driving
frequency 𝑓1.

Closed-form approximate solution. Note that, because the dispersion of
the A0 and S0 modes is small in the allowed frequency range, relatively
good approximate results can be obtained by using the closed-form
solution to non-collinear interaction of bulk waves of speed 𝑐1 and 𝑐3
with 𝑐1 ≤ 𝑐3 — this solution is exact for the case of SH0 − SH0 → ZGV.
The solution space of wavevectors is an ellipse with foci 𝟎 and 𝐤3, with
extreme values 𝐤1 =

1
2𝐤3(1±

𝑐3
𝑐1
) at 𝜔1 =

1
2𝜔3(1±

𝑐1
𝑐3
). Using this formula

with the phase velocity of A0 or S0 taken at half the ZGV frequency
predicts bounds of 1

2𝑓𝑍𝐺𝑉 ± 22% (exact: ±27%) for the A0 −A0 → ZGV

interaction, and of 1
2𝑓𝑍𝐺𝑉 ± 44% (exact: ±37%) for the S0 − S0 → ZGV

interaction.

2.4. Interaction coefficients

Here we give numerical values of the interaction coefficients 𝛾 (𝑡)1,2,3
appearing in Eqs. (3b) and (A.12).

Normalization of the mode shapes. The coefficients 𝛾 (𝑡)1,2,3 are defined
up to a factor that depends on the normalization of the mode shapes
𝐔𝑖. We choose to adopt a definition that allows a comparison with
the well-known, scalar case of harmonic generation caused by two
collinear longitudinal bulk waves. A detailed discussion of this choice
is given in Appendix B. In a nutshell, we require the Lamb mode
Re

(

𝐴𝑖𝐔𝑖(𝑧)ei(𝜔𝑡−𝐤
𝑇 𝐱)

)

to carry the same thickness-average mechanical
energy as a plane bulk wave 𝐴𝑖 cos𝜔(𝑡−𝑥∕𝑐𝑙), leading to 1

ℎ ∫ ℎ
0 ‖𝐔𝑖‖

2d𝑧 =
1 for a homogeneous plate. We set the phase by requiring in-plane
components to be pure real, with a non-negative value at 𝑧 = 0 along
the radial and azimuthal directions: 𝑈𝑖,𝑥|𝑧=0 ≥ 0 (P-SV) and 𝑈𝑖,𝑦|𝑧=0 > 0
(SH) for 𝐤∕‖𝐤‖ = (1, 0, 0)𝑇 .

Generalized acoustic non-linear parameter. We introduce the follow-
ing dimensionless coefficients to characterize the non-linear coupling
within a given mode triplet:

𝛽1,2,3 =
2𝐴3𝑐𝑙

𝐴1𝐴2𝜔1𝜔2𝑡
, (4)

with 𝑐𝑙 the longitudinal wave velocity. Eq. (4) is meant to be applied
to measure 𝛽1,2,3 from a time signal, under a plane wave assumption.
When applied to bulk longitudinal waves with 𝜔 ≠ 𝜔 , 𝛽 coincides
1 2 1,2,3
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Fig. 2. Space of pairs ((𝑓1 ,𝐤1); (𝑓2 ,𝐤2)) solutions to the phase matching condition for S0 − S0 → ZGV, SH0 − SH0 → ZGV and A0 −A0 → ZGV interactions. (a) Admissible frequency
ranges (thick lines) superimposed on dispersion curves (thin lines). (b) Admissible wavevectors. Examples of pairs (𝐤1 ,𝐤2)S0 are drawn and the reflection across the point 1

2
𝐤𝑍𝐺𝑉

elating them is represented by a thin dotted line. (c) Interaction angle as a function of the driving frequency of one of the two modes.
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ith the acoustic parameter of quadratic non-linearity 𝛽 defined as a
train-hardening2 factor 𝜎 = 𝜌𝑐2𝑙 (𝜀 + 𝛽𝜀2), where 𝜎 is the stress, 𝜀 the
train, and 𝛽 = 3

2 + 𝑙+2𝑚
𝜆+2𝜇 . Eq. (4) can be related to material parameters

sing Eq. (3b), giving 𝛽1,2,3 = 2𝛾 (𝑡)1,2,3𝑐𝑙∕𝜔1𝜔2. Furthermore, as 𝛾 (𝑡)1,2,3
depends linearly on the Murnaghan’s constants 𝑙, 𝑚, 𝑛, we can write:

𝛽1,2,3 = 𝛽(0)1,2,3 +
𝜕𝛽1,2,3
𝜕𝑙

𝑙 +
𝜕𝛽1,2,3
𝜕𝑚

𝑚 +
𝜕𝛽1,2,3
𝜕𝑛

𝑛. (5)

The four coefficients that appear in the right-hand side of Eq. (5)
depend only on the linear material constants (𝜌, 𝜆, 𝜇) and on the triplet
of modes. Comparing again to bulk longitudinal waves, one obtains
𝛽(0) = 3∕2, 𝜕𝑙𝛽 = 1∕(𝜆 + 2𝜇), 𝜕𝑚𝛽 = 2∕(𝜆 + 2𝜇) and 𝜕𝑛𝛽 = 0.

Conversion factor for measurements of the out-of-plane component. In this
work the observable is the surface out-of-plane displacement 𝑢𝑧|𝑧=0. It
is therefore convenient to use the alternative normalization (superscript
(𝑧)) 𝐮 = Re

(

𝐴(𝑧)
𝑖 𝐔(𝑧)

𝑖 (𝑧)ei(𝜔𝑡−𝐤𝑇 𝐱)
)

such that 𝑈 (𝑧)
𝑖,𝑧 |𝑧=0 = 1 and 𝐴(𝑧)

𝑖 is the
measured amplitude. We call

𝛼1,2,3 =
𝑈1,𝑧𝑈2,𝑧

𝑈3,𝑧

|

|

|

|

|𝑧=0
(6)

the conversion factor to the former normalization such that Eq. (4)
expresses as:

𝛽1,2,3 = 𝛼1,2,3
2𝐴(𝑧)

3 𝑐𝑙

𝐴(𝑧)
1 𝐴(𝑧)

2 𝜔1𝜔2𝑡
. (7)

Results. The coefficients appearing in Eq. (5) are represented in Fig. 3
for the interactions S0 − S0 → ZGV, A0 − A0 → ZGV and SH0 − SH0 →

GV, in the allowed frequency ranges. Selected numerical values are
iven in Table 3, along with the conversion factor (note that 𝛼1,2,3
s pure imaginary). The derivatives with respect to 𝑙, 𝑚 and 𝑛 are
ormalized by the P-wave modulus 𝜆 + 2𝜇 to facilitate a comparison
ith 𝛽 (𝛽 = −5.1 to −9.1 with our set of constants).

Let us explain on an example how to read Fig. 3. Suppose one
ants to calculate the theoretical value of 𝛽1,2,3 for the S0 − S0 → ZGV

nteraction, with equal primary frequencies 𝑓1 = 𝑓2 = 1
2𝑓𝑍𝐺𝑉 . Then,

one has to read on Fig. 3-a at abscissa 1 the values of the solid (−1.44)
and dashed curves (−2.40, −1.61, 0.31) — also reported in Table 3.
These three latter values must then be multiplied respectively by 𝑙, 𝑚
and 𝑛, and divided by 𝜆 + 2𝜇. Finally, 𝛽1,2,3 is obtained by summing
hese four values according to Eq. (5). Now, if one wants to calculate
1,2,3 for another combination of primary frequencies, the procedure is

similar but the curves must be read at another abscissa by taking either
𝑓 = 𝑓1 or 𝑓 = 𝑓2.

2 Note that several definitions coexist in the literature and often include a
inus sign (i.e. measuring softening for positive strains) and/or a ×2 factor.
4

e

Fig. 3. Normalized non-linear coefficients for the three canonical combinations. The
non-linear acoustic parameter 𝛽1,2,3 can be obtained from a set of curves by applying
Eq. (5).

As expected, these three interactions exhibit complementary sensi-
tivities to 𝑙, 𝑚, 𝑛. As Murnaghan’s constants are usually of the same
sign, the SH0 − SH0 → ZGV interaction is the one with weakest
transfer rate, because it depends on 𝑚 and 𝑛 with similar magnitudes
but opposite signs and has zero component along 𝑙. On the other hand,
the S0 − S0 → ZGV interaction sums contributions of 𝑙 and 𝑚 while it
epends weakly on 𝑛, and is therefore the strongest one. The A0−A0 →

GV interaction, although somewhat weaker, is in turn interesting in
hat its relative sensitivities to the three constants change significantly
ith the frequency, such that, in principle, it seems possible to infer

hem all from experiments repeated at different driving frequencies and
nteraction angles. Another noteworthy characteristic of this interaction
s that the geometric non-linear contribution 𝛽(0)1,2,3 is quite small at
he extreme limits of the frequency range, i.e. for a 180◦ interac-
ion angle: this point is the most sensitive choice to weak material
on-linearities.

. Experiments

Three experiments performed on a 1.5 mm thick aluminum plate
alloy Al 5754-H111, lateral dimensions 20 × 30 cm2) are reported in
he following sections. Prior to these experiments, the exact value of
he S1S2 ZGV resonance in the plate was determined using a classical
xperimental setup — we measured 𝑓 = 1.98 MHz.
𝑍𝐺𝑉
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Table 3
Selected theoretical values of the coefficients from which the non-linear acoustic parameter 𝛽1,2,3 can be calculated, for the three canonical combinations, and of the conversion
actor 𝛼1,2,3 for measurements of the out-of-plane displacement (see Eqs. (5) and (6)). Ranges for 𝛽1,2,3 are min–max values from the sets of third order moduli given in Table 1
hich represent different alloys.

Primary modes Configuration 𝛽(0)1,2,3 (𝜆 + 2𝜇)×
{

𝜕𝛽1,2,3
𝜕𝑙

𝜕𝛽1,2,3
𝜕𝑚

𝜕𝛽1,2,3
𝜕𝑛

}

𝛼1,2,3 Typical 𝛽1,2,3 in aluminum

S0 − S0
𝑓1 =

1
2
𝑓𝑍𝐺𝑉

⟨𝐤1 ,𝐤2⟩ = 127◦
−1.44 −2.40 −1.61 0.31 −0.39 i 6.4 to 11.9

𝑓1 =
1
2
𝑓𝑍𝐺𝑉 ± 37%

⟨𝐤1 ,𝐤2⟩ = 180◦
−2.64 −2.80 −3.01 0 −0.36 i 10.0 to 17.8

A0 − A0
𝐿𝑓1 =

1
2
𝑓𝑍𝐺𝑉

⟨𝐤1 ,𝐤2⟩ = 155◦
−1.15 0.66 0.10 −1.23 −0.99 i −0.2 to 1.4

𝑓1 =
1
2
𝑓𝑍𝐺𝑉 ± 27%

⟨𝐤1 ,𝐤2⟩ = 180◦
−0.19 0.68 0.73 0 −1.0 i −3.3 to −5.2

SH0 − SH0
𝐿𝑓1 =

1
2
𝑓𝑍𝐺𝑉

⟨𝐤1 ,𝐤2⟩ = 149◦
−0.28 0 −0.43 0.28 0.0 to 0.3

𝑓1 =
1
2
𝑓𝑍𝐺𝑉 ± 27%

⟨𝐤1 ,𝐤2⟩ = 180◦
−0.36 0 −0.90 0.60 0.1 to 0.9
Fig. 4. Schematic of the experimental setup common to Exps. #1 and #2. The primary
field is generated by two contact transducers fed with high voltage. The surface
out-of-plane displacement is recorded as a point detection over a 2D grid.

Setup. Fig. 4 represents the experimental setup that is common to Exps.
#1 and #2, and of which Exp. #3 only slightly differs. Two independent
tonebursts at frequencies 𝑓1 and 𝑓2 close to 0.99 MHz are sent by a
signal generator (Tektronix AWG-3022C) into a high power gated am-
plifier (RITEC SNAP 5000), and then fed into piezoelectric disks (25 mm
diameter, 2 mm thickness) glued on heads. The heads (wedges for Exps.
#1 and #3, metallic footprints for Exp. #2, see Figs. 6-a and 7-a) are
designed to select a desired Lamb mode and are themselves glued onto
the aluminum plate. The plate is mounted on a 2D translation stage
(Newport UTS50CC and SMC100CC) that can span 5 cm on each axis at
micrometric precision. Waves are detected with a laser interferometer
(Tempo 1D, Bossa Nova Technologies; bandwidth of 20 kHz − 1 GHz)
that measures the absolute out-of-plane displacement on a focused spot
that is pointwise regarding the millimetric wavelenghts involved. This
device is chosen for its very good sensitivity as well as for allowing
non-contact detection, which is essential to detect a ZGV mode without
dramatically affecting it. It has however a drawback in that it saturates
for peak amplitudes above 5 − 6 nm, levels that are easily reached
with our transducers when driven at amplified voltages. Digitization
(PicoScope 5444D) is done on 15 bits at a 15 MHz sampling rate and
signals are averaged 40 (for 2D scans) to 80 times (at single points)
to improve the signal to noise ratio (SNR). The piezoelectric disks are
operated near a thickness resonance and can hence be considered as
narrow-band transducers. Experiments #1 and #2 operate at voltages
about 200 Vpp (i.e. 100 W∕channel) on 50 cycles, while Exp. #3 does
not use the amplifier and operates at 20 Vpp (i.e. 1 W∕channel) on 2000
5

cycles.
3.1. Experiment #1: S0 − S0 → ZGV

We report in this section a first experiment in which the ZGV mode
is generated using the S0 − S0 → ZGV interaction.

Methodology. Wedges made of Nylon (type PA6) are manufactured to
selectively excite the S0 mode. Snell–Descartes’ law (2.7 mm∕𝜇s for the
longitudinal wave in Nylon, and 5.0 mm∕𝜇s phase velocity for the S0
Lamb mode at 1 MHz) predicts an optimal angle of incidence of 33◦.
According to the predictions of Section 2.3, the wedges are glued on the
plate to form an angle of 127◦. The driving frequencies are set with a
small difference to facilitate the distinction between input and sample
non-linearity: 𝑓1 = 1.09 MHz and 𝑓2 = 0.89 MHz (i.e. ±10%). This small
|𝑓1 − 𝑓2|∕2 does not affect significantly the interaction angle which is
almost constant around |𝑓1 − 𝑓2|∕2 = 0 (see Fig. 2-c).

Results and discussion. Results are shown in Figs. 5 and 6.
A typical signal recorded at the center of the region where beams #1

and #2 cross is represented in Fig. 5-a. It consists of two parts. During
the first tens of μs the interferometer detects the intense, primary
S0 field, and saturates — the inset shows in thinner line the actual
amplitude reconstructed from an acquisition at lower driving voltage.
For harmonics analysis, this first part is blind. Once the 50 cycles
trains are gone, the interferometer detects a much lower field, most
of which is linear and composed of unwanted, direct A0 modes, and
of a diffuse A0 + S0 field due to edges reflections. Fig. 5-b shows
a time–frequency analysis of the signal. Different spectral contribu-
tions appear after the saturated part. Of those, 2𝑓1, 2𝑓2, 3𝑓1 and 3𝑓2
are thought to be mainly due to the wedge/plate and wedge/piezo
adhesive bonds because they can vary from absent to strong when
unmounting/remounting the wedges and repeating the measurement.
The component at 𝑓1 + 𝑓2 = 1.98 MHz = 𝑓𝑍𝐺𝑉 distinguishes from
all others in that, besides being detectable only when both piezo are
activated, it is much more monochromatic and of almost constant
amplitude over long times — remember that 1000 μs represent nearly
2000 periods. This clearly indicates that we are observing the expected
phenomenon. Fig. 5-c shows a spectrum of the non-saturated part of
the signal (the time window is depicted in black in Fig. 5-a) together
with spectra of #1 and #2 alone, allowing the previous remark to be
appreciated more quantitatively. Then, Figs. 5-d to -g show how the
peak amplitude at 𝑓1+𝑓2 varies along with several control parameters.
One indeed observes a quadratic trend with the driving voltage (Fig. 5-
d) and a linear trend with the number of cycles (Fig. 5-e). Fig. 5-f gives
an idea of how sharp the effect is in matching 𝑓1 + 𝑓2 with 𝑓𝑍𝐺𝑉 ,
although strictly speaking the peak width depends also critically on
the number of input cycles. The fact that no harmonics is generated
for 𝑓1 + 𝑓2 < 𝑓𝑍𝐺𝑉 is not surprising because the S1 − S2 branch is
not propagative — and as such cannot accumulate energy over long

excitations, and other interactions S0−S0 → S0,SH0,A0,SH1,A1 are not
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possible due to wrong symmetry pairings or absence of solution to the
phase matching condition. However, as emphasized by the asymmetry
of the peak, the side 𝑓1 + 𝑓2 > 𝑓𝑍𝐺𝑉 requires another explanation.
We think that several adverse features combine to this absence of
detection, namely a window effect and two physical reasons to why
higher frequencies should be generated with much less efficiency:

• as we are blind during forcing, we only observe whatever remains
without traveling (the ZGV mode) or comes back as a smaller,
diffuse field,

• the group velocity becomes significant, so the secondary wave
soon leaves the interaction area without accumulating much en-
ergy,

• there is a strong mismatch in the phase matching condition:
because the dispersion relation 𝑓 (𝑘) is flat at 𝑘𝑍𝐺𝑉 , increasing
slightly 𝑓1 + 𝑓2 means a large change on ‖𝐤3‖, and hence on the
interaction angle.

Fig. 5-g shows a study on the influence of the difference |𝑓1 − 𝑓2|∕2.
It can be seen that despite the relatively high level of input non-
linearity observed at |𝑓1 − 𝑓2|∕2 = 0 (for which 2𝑓1 = 2𝑓2 = 𝑓1 +
𝑓2, thus comprising second harmonic generation at 2𝑓1 and 2𝑓2 from
each excited beam, and the non-collinear wave mixing effect 𝑓1 + 𝑓2
exciting the ZGV mode), the subtraction step (#1&#2) − #1 − #2 (red
squares) is effective in recovering at good precision the true amplitude
resulting only from the non-linear and non-collinear wave-mixing effect
at 𝑓1+𝑓2 and allows to isolate the sample non linearity. We rely on this
conclusion for Exp. #2 described in the following section.

Finally, (𝑥, 𝑦) scans (4 × 4 cm2 sampled in 64 × 64 points) are
resented in Fig. 6 as space and wavenumber analyses. Fig. 6-b shows
snapshot of the primary field at early times, when arriving in the

nteraction region. Fig. 6-c shows the wavenumber-frequency content
f the primary field at the driving frequencies, reconstructed from
ower driving voltages to avoid saturation biases, and time windowed
o select only the incident train. Theoretical dispersion relations are
uperimposed in thin colored circles to facilitate interpretation. Then,
igs. 6-d and -e show the late field (i.e. for 𝑡 > 120 μs to exclude
aturation) filtered at the ZGV frequency. When both piezos are active,
he observed field is indeed dominated by the expected ZGV mode
ith an almost purely space-harmonic content, and is maximal at the

ocation where the interaction occurred.

.2. Experiment #2: A0 − A0 → ZGV

We report in this section a second experiment that is similar to the
revious one except that it explores the A0 − A0 → ZGV interaction.

ethodology. Comb type heads consisting of a smooth (top) and a
achined (bottom) faces are manufactured in brass disks (see Fig. 7-

). Piezoelectric disks are glued on the smooth faces and operated
ear a thickness resonance. The machined faces are glued to the plate
nd transmit an out-of-plane excitation distributed in a pattern that
atches a A0 planar wavefront (2.6 mm at 1 MHz), thus selectively

xciting this mode (see Fig. 7-b,c). The heads are oriented to form
n angle of 155◦ between the preferential directions of the waves
eing generated, according to the predictions of Section 2.3. The rear
urroundings of each transducer are covered with adhesive paste with
he twofold purpose to dampen the strong specular rays coming from
he neighboring edges, and to reduce the resonant behavior of the
eads. Relying on the good promises of the subtraction processing (see
ig. 5-g), the driving frequencies are set equal: 𝑓1 = 𝑓2 = 0.99 MHz.

esults. Fig. 7 shows (𝑥, 𝑦) scans of the wave field (4 × 4 cm2 sampled in
0 × 80 points). For details in the interpretation, the reader is referred

to the previous section and to the very similar Fig. 6. Here again, the
detection of the ZGV mode resulting from the non-collinear interaction
is demonstrated.
6

.3. Measured non-linear acoustic parameters

The theoretical framework presented in Section 2.4 and Appendix A
s restricted to plane waves. However, the experiments involve beams of
inite width. The S1S2 ZGV mode is quite dispersive, and hence prone to
iffraction attenuation. When generated by a brief point or line source
uch as a laser impact, diffraction dominates over material damping
t early times, resulting in a fast 𝑡−1∕2 decay [35]. Here the context is
omewhat different in that the interaction zone acts as a distributed
ource with a moving phase, but we do notice a dependence on the
ime window used to extract the ZGV amplitude. This dependence
an be well observed in Fig. 8-f on the part labeled free decay — see
ection 3.4.

There are two known ways to cope with diffraction and damping.
he first and best way is to fit the observed space–time variations
ith a propagation model. It is well documented for collinear gener-
tion [2], however, methodological developments are still needed for
on-collinear mixing. The second way is to use only the slope of the
ariations, taken as close to the source as possible. This is the approach
etained here. Going back to Fig. 8-f, and also to Fig. 5-e, variations
ppear well linear over time segments of at least 50 μs, as the plane
ave model predicts it. In a collinear setup this is a good indication

hat attenuation biases are limited on these scales.

ethodology. The ZGV amplitude is measured by time-windowing over
0 μs just after the interaction has ceased. For instance, the black
indow drawn in Fig. 5-a is replaced with a window going from 80 μs

o 130 μs. The signals are then 3D-Fourier-transformed and |𝐴3| is
ead at the ZGV frequency as the max value in the (𝑘𝑥, 𝑘𝑦) space. The
mplitudes |𝐴1| and |𝐴2| are obtained similarly by time-windowing to
elect the interaction (e.g. from 30 μs to 70 μs in Fig. 5-a), 3D-Fourier-
ransforming, and reading the max values at the driving frequencies 𝑓1
nd 𝑓2. Finally, Eq. (7) is applied by taking 𝑐𝑙 = 6270 m∕s, 𝑡 = 50 μs
s excitation duration; 𝜔1 = 𝜔2 = 2𝜋 × 0.99 MHz and |𝛼1,2,3| = 0.99 for
he A0 − A0 → ZGV case; 𝜔1 = 2𝜋 × 0.89 MHz, 𝜔2 = 2𝜋 × 1.09 MHz and
𝛼1,2,3| = 0.39 for the S0 − S0 → ZGV case.

esults. We obtained |𝐴1| = 8.9 nm, |𝐴2| = 5.4 nm and |𝐴3| = 13.4 ×
0−3 nm for the S0 − S0 → ZGV experiment, giving |𝛽expS0 ,S0 ,ZGV

| = 0.7,
nd |𝐴1| = 11.1 nm, |𝐴2| = 10.9 nm and |𝐴3| = 19.8 × 10−3 nm for the
0 − A0 → ZGV experiment, giving |𝛽expA0 ,A0 ,ZGV

| = 1.1. Compared to the
lausible values estimated in the theoretical analysis 𝛽 thS0 ,S0 ,ZGV = 6.4
o 11.9 and 𝛽 thA0 ,A0 ,ZGV

= −0.2 to 1.4 (see Table 3), the agreement
s very good for the A0 − A0 → ZGV experiment while it is bad for
he S0 − S0 → ZGV one. We currently lack a satisfactory explanation,
lthough finite-beam effects could have been naively discarded despite
he justification given above, and although this comparison is only
ndicative because the model material constants (𝑙, 𝑚, 𝑛) represent other
luminum alloys.

.4. Experiment #3: generation at low amplitudes

ethodology. We go back to the S0 − S0 → ZGV interaction and use
the same setup as for Exp. #1, except that the amplifier is now removed
see Fig. 8-a). The outputs of the signal generator are directly connected
o the piezoelectric disks (with 50 Ω loads) glued on the wedges. The
riving frequencies 𝑓1 and 𝑓2 are set with a small difference 𝑓2 − 𝑓1 =

10 kHz (i.e. ±0.5%) around half the ZGV frequency. The generator is
able to deliver up to 20 Vpp into 50 Ω on each channel. Compared to
Exp. #1, the input voltages are lower by a factor of roughly 10. Non-
linearly generated amplitudes are then expected to be reduced by a
factor of ≈ 100. To compensate these lower levels, we increase the
number of cycles from a few tens to 2000 (i.e. ≈ ×40). This clearly does
not balance the drop entirely, but proves to generate amplitudes high
enough to be unambiguously detected with a few tens averages.
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Fig. 5. Typical signals at the center of the crossing region for the S0 − S0 → ZGV interaction. (a) Time signal. (b) Time–frequency analysis. (c) Spectrum of the non-saturated
part (𝑡 > 120 μs) for piezos #1 and #2 activated alone or simultaneously. (d, e, f, g) Peak amplitude at the sum frequency when varying (d) the driving voltage of both piezos,
(e) the number of cycles of the tonebursts, (f) the sum frequency 𝑓1 + 𝑓2 while keeping constant (𝑓1 − 𝑓2)∕2 = 0.1 MHz, (g) the difference |𝑓1 − 𝑓2|∕2 while keeping constant
𝑓1 + 𝑓2 = 1.98 MHz.
Fig. 6. 2D view of the S0 − S0 → ZGV interaction. (a) Photograph of the setup showing the wedge transducers and the laser interferometer. (b) Snapshot of the primary field
arriving in the interaction region. (c) Wavenumber content of the primary field at the driving frequencies. (d) Real part of the field at the ZGV frequency (windowed to 𝑡 > 120 μs
to exclude saturation, see Fig. 5-a). (e) Wavenumber content of (d).
Fig. 7. 2D view of the A0 − A0 → ZGV interaction. (a) Photograph of the setup showing the brass heads with A0-like footprints, with red arrows representing outgoing waves.
(b) Snapshot of the primary field arriving in the interaction region. (c) Wavenumber content of the primary field at the driving frequencies. (d) Real part of the field at the ZGV
frequency (windowed to 𝑡 > 120 μs to exclude saturation, see Fig. 5-a). (e) Wavenumber content of (d).
Results and discussion. The results presented in Fig. 8 were recorded
7

with 50 averages. Because of the lower amplitudes, the interferometer

no longer saturates during excitation. This makes this early stage fully

observable and enables a more complete picture.
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Fig. 8-b shows a few snapshots of the field (real part) during
and after excitation with a time–frequency processing centered at the
ZGV frequency. One can clearly see that a wave pattern progressively
appears until 𝑡 = 2000 μs, that is, when the excitation stops, and then
vanishes. Fig. 8-c shows a typical signal recorded at the center of the
observation window, with a peak amplitude about 0.8 nm when both
transducers are emitting. The beatings in the first 2000 μs are due to
the small difference between the driving frequencies. The spectrum
of this entire signal is shown in Fig. 8-d: as emphasized by the inset
around 2 MHz no peaks are measured at 2𝑓1 or 2𝑓2, meaning that the
non-linearity of the receiving system is now indeed too small to be
observed. The peak at 𝑓1 + 𝑓2 (1.8 10−3 nm peak amplitude) has, in
turn, a SNR of about 20 dB. The same signal is then shown in Fig. 8-e
in a time–frequency representation, with a focus on the ZGV frequency
— the magnitude at the driving frequencies is also plotted in gray
lines. A tendency of linear increase with time can indeed be observed
during forcing, followed by a slow, free decay. Finally, Fig. 8-f shows
the same time–frequency analysis applied to the data transformed into
the wavenumber domain (𝑥, 𝑦) → (𝑘𝑥, 𝑘𝑦). The black line represents the
magnitude of the point (𝑓𝑍𝐺𝑉 ,𝐤𝑍𝐺𝑉 ) as a function of time, while gray
lines show the values at neighboring points (the solid/dashed curves
stand for minus/plus a given percentage in the wavenumber 𝑘). The
time dependence can this way be observed more accurately — the
Fourier transform on 64 × 64 points can improve the SNR by up to
+36 dB for a pure harmonic pattern. One can now observe a trend
towards saturation in the growth. It is also noteworthy that the decay
rate results faster for greater (dashed lines) than for smaller (solid lines)
wavenumbers. An explication could be that greater wavenumbers are
indeed more dispersive than smaller ones, although it is not clear to
us whether viscous attenuation also contributes quantitatively to this
difference.

Before closing this section, we should not disregard the fact that
the very attractive prospects offered by this low power setup come
at the cost of technical difficulties that are common to resonance
experiments. Indeed, the price to pay is that the driving frequencies
must be adjusted with extreme care, because a target error of one part
over 2000 (the number of cycles) now significantly degrades the phase
matching condition. Such required accuracy starts to be sensitive to
temperature effects: this was not an issue for scans running over a
couple hours, but we did observe variations with overnight fluctuations
(about ±2◦ in the room). Another limitation could be attenuation. Here
the large number of cycles was still well below the quality factor of the
ZGV mode, which often exceeds 104 in metal plates, so that even more
cycles would have yielded higher amplitudes. But in more dissipative
media, compensating low amplitudes with long excitations is obviously
a more limited strategy.

4. Conclusion

The non-linear generation of the S1S2 ZGV Lamb mode at the
intersection of two high amplitude beams of lower frequency has been
analyzed theoretically and experimentally in an aluminum plate. The
methodology followed can be transposed to other materials, to the
difference interaction, and to other targeted modes. A new derivation
of the coupling coefficients was given that is suited to an observation
of the interaction as a function of time, and is thereby adapted to
zero group velocity modes. Theoretical values of these coefficients were
discussed for the most canonical cases. The experimental realizations
involved the fundamental symmetric and antisymmetric Lamb modes,
which are relatively easy to excite selectively and efficiently. A com-
plete space–time observation of the phenomenon was achieved in an
experiment operated at low power, from the emergence of the mode
during forcing to its free decay. The main features of the interaction
were observed, such as non-trivial interaction angle, quadratic depen-
dence with the driving voltage, or linear dependence with the number
of excitation cycles.
8

In the context of harmonic generation, the specificity of zero group
velocity modes is that energy can be accumulated by simply launching
longer primary waves into an intersection area whose diameter can be
as small as a few plate thicknesses. In contrast, in configurations that
produce propagating modes, accumulating energy requires to increase
the interaction area, which dilutes information and soon faces trivial
limitations related to the geometrical constraints of the actual system.
Taking advantage of this appealing property, we showed that targeting
such a mode enables to generate detectable non-linear effects using
input powers up to two orders of magnitude lower than when targeting
other modes.

Zero group velocity modes appear as promising tools based on
which novel non-destructive characterization methods can be devel-
oped to assess locally the non-linear properties of a plate. Among
possible applications, we believe that they could be relevant to evaluate
the bonding quality of an adhesive joint. They could also be a route to
achieve harmonic generation with a fully non-contact system using a
time-modulated laser excitation.
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Appendix A. Derivation of the interaction coefficients

The interaction coefficients appearing in Eq. (3b) are usually de-
rived in the literature in the frequency domain, by expanding in a
modal series the small wave field resulting from the non-linear inter-
action. Here, we take a slightly different approach in that the modal
series is expressed in the wavenumber domain to allow for an analytical
treatment of the time variable. Indeed, this time-domain resolution
is necessary because Zero Group Velocity modes yield singularities
when viewed in the frequency domain — their forced response grows
unbounded with time as energy accumulates without traveling.

We start by briefly recalling the equations of motion for finite
amplitudes in a waveguide as they can be established in the pertur-
bative approximation. More details can be found in e.g. [50–52] for
the collinear case, and in [6,9] for a formalism more suited to the
non-collinear case.

Let 𝐱 = (𝑥, 𝑦, 𝑧)𝑇 refer to the so called ‘‘natural’’ coordinates, i.e.
attached to the system at rest. The system under interest is a traction-
free plate that is unbounded in the (𝑥, 𝑦) plane and comprised between
𝑧 = 0 and 𝑧 = ℎ (see Fig. 2-d). Two wave trains of finite amplitude,
labeled #1 and #2 further on, are generated within the plate. We call
𝐮(𝐱) the total displacement field produced by these waves and their
interaction. Perturbation theory starts by expanding 𝐮 as a sum of terms
of different order:
𝐮 = 𝐮1 + 𝐮2 + 𝐮11 + 𝐮22 + 𝐮12, (A.1)
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Fig. 8. Low power generation of the S0 −S0 → ZGV. (a) Schematic of the experimental setup (Exp. #3). (b) Snapshots of the field (real part) at the ZGV frequency processed with
a time–frequency filter. (c) Typical signal (out-of-plane displacement). (d) Spectrum of (c) (entire signal). (e) Time–frequency analysis of (c) at the ZGV frequency (blue) and at the
driving frequencies (grays). (f) Time–frequency analysis in the wavenumber domain at the ZGV frequency: at 𝐤 = 𝐤𝑍𝐺𝑉 (black), 𝐤 = 𝐤𝑍𝐺𝑉 (1−pct) (solid grays) and 𝐤 = 𝐤𝑍𝐺𝑉 (1+pct)
(dashed grays).
where 𝐮1 and 𝐮2 (order 1) denote the primary fields, and 𝐮11, 𝐮22 and
𝐮12 (order 2) denote fields resulting from non-linear interactions: 𝐮11
refers to the self-interaction of wave #1, 𝐮22 to the self-interaction of
wave #2, and 𝐮12 to the mutual interaction of waves #1 and #2. Note that
𝐮12 is the same as 𝐮3 in Section 2.1 when the phase matching condition
is satisfied and a single mode dominates. We shall focus only on this
latter term further on. For 𝐮12, the balance of forces and boundary
conditions read, in absence of external load:

𝜌𝜕2𝑡 𝐮12 − 𝐝𝐢𝐯 𝐒𝐿(𝐮12) = 𝐟𝑣𝑜𝑙 , (A.2a)

𝐒𝐿(𝐮12) ⋅ 𝐧𝑧 = 𝐟𝑠𝑢𝑟𝑓 for 𝑧 = 0, ℎ. (A.2b)

In Eqs. (A.2) 𝐧𝑧 is the unit vector along the 𝑧 axis, oriented up-
wards, and 𝐒𝐿(𝐮12) = 𝐂 ∶ 𝛁𝐮12 is the linear part of the first Piola–
Kirchhoff stress tensor referring to 𝐮12, with 𝐂 the 4th-rank stiffness
tensor. The source terms appearing in the right hand side are 𝐟𝑣𝑜𝑙 =
𝐝𝐢𝐯 𝐒𝑁𝐿(𝐮1,𝐮2, 2) and 𝐟𝑠𝑢𝑟𝑓 = −𝐒𝑁𝐿(𝐮1,𝐮2, 2) ⋅ 𝐧𝑧, with 𝐒𝑁𝐿(𝐮1,𝐮2, 2) the
non-linear part of the first Piola–Kirchhoff stress tensor of the total field
𝐮 that gathers products between 𝛁𝐮1 and 𝛁𝐮2 (the last argument ε2ε
emphasizes the truncation order).

We assume that the material is hyperelastic, with a classical,
quadratic non-linear component. In the case of an isotropic medium,
the elastic energy density function can be written as:

 = 𝜆
2
tr(𝐄)2 + 𝜇tr(𝐄2) + 𝐴

3
tr(𝐄3) + 𝐵tr(𝐄)tr(𝐄2)

+ 𝐶
3
tr(𝐄3) + 𝑂(𝐄4). (A.3)

In Eq. (A.3) 𝐄 = 1
2 [𝛁𝐮 + 𝛁𝐮𝑇 + 𝛁𝐮𝑇𝛁𝐮] is the Lagrangian strain

tensor, 𝜆 and 𝜇 are Lamé’s constants, and 𝐴, 𝐵 and 𝐶 are Landau and
Lifshitz’s third order elastic constants — we recall the relations with
Murnaghan’s constants: 𝑙 = 𝐵 + 𝐶, 𝑚 = 1

2𝐴 + 𝐵 and 𝑛 = 𝐴. In this
context, it can be established [52] that:
9

𝐒𝑁𝐿(𝐮1,𝐮2, 2) = 𝜆tr(𝛁𝐮2)𝛁𝐮1 + 𝜇𝛁𝐮1(𝛁𝐮2 + 𝛁𝐮𝑇2 )
+ 𝜆tr(𝛁𝐮1)𝛁𝐮2 + 𝜇𝛁𝐮2(𝛁𝐮1 + 𝛁𝐮𝑇1 )
+ 𝜆tr(𝛁𝐮𝑇1 𝛁𝐮2)𝐈
+𝜇(𝛁𝐮𝑇1 𝛁𝐮2 + 𝛁𝐮𝑇2 𝛁𝐮1)
+ 2𝐶tr(𝛁𝐮1)tr(𝛁𝐮2)𝐈
+𝐵tr(𝛁𝐮1)(𝛁𝐮2 + 𝛁𝐮𝑇2 )
+𝐵tr(𝛁𝐮2)(𝛁𝐮1 + 𝛁𝐮𝑇1 )

+ 𝐵
2
tr(𝛁𝐮1𝛁𝐮2 + 𝛁𝐮2𝛁𝐮1 + 2𝛁𝐮𝑇1 𝛁𝐮2)𝐈

+ 𝐴
4
(𝛁𝐮1𝛁𝐮2 + 𝛁𝐮2𝛁𝐮1 + 𝛁𝐮𝑇1 𝛁𝐮

𝑇
2

+𝛁𝐮𝑇2 𝛁𝐮
𝑇
1 + 𝛁𝐮𝑇1 𝛁𝐮2 + 𝛁𝐮𝑇2 𝛁𝐮1

+𝛁𝐮1𝛁𝐮𝑇2 + 𝛁𝐮2𝛁𝐮𝑇1 ), (A.4)

in which 𝐈 is the identity tensor of order 2 and rank 3. Eq. (A.4) and
the results below are also valid for arbitrary variations of the elastic
constants with depth. The case of an anisotropic medium requires to
modify Eqs. (A.3) and (A.4) accordingly, but the further derivation still
stands.

We now take the primary fields to be monochromatic and composed
of a single mode each:

𝐮1 = Re
(

𝐴1𝐔1(𝑧)e
i(𝜔1𝑡−𝐤𝑇1 𝐱)

)

, (A.5a)

𝐮2 = Re
(

𝐴2𝐔2(𝑧)e
i(𝜔2𝑡−𝐤𝑇2 𝐱)

)

, (A.5b)

in which we assume 𝜔1 ≥ 𝜔2 > 0. In Eqs. (A.5) the amplitudes
𝐴1 and 𝐴2 are defined depending on the normalization chosen for
the modeshapes 𝐔1 and 𝐔2. This choice is postponed to Appendix B.
The driving sources are composed of two parts, labeled with super-
script ± to indicate respectively sum and difference interactions: 𝐟𝑣𝑜𝑙 =
Re

(

1
2𝐴1𝐴2𝐅±

𝑣𝑜𝑙e
i[(𝜔1±𝜔2)𝑡−(𝐤1±𝐤2)𝑇 𝐱]

)

(𝐴2 must be replaced by its con-
jugate 𝐴∗ for the ‘‘−’’ case), and similarly for 𝐟 . We recall (see
2 𝑠𝑢𝑟𝑓
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e.g. [53,54]) that when Fourier-transformed into the wavenumber do-
ain (𝑥, 𝑦) → (𝑘𝑥, 𝑘𝑦), the causal Green’s tensor of Eqs. (A.2) reads:

(𝑧, 𝑧′, 𝑡) =
∑

𝑛
𝑔𝑛(𝑡)

𝐔𝑛(𝑧)𝐔𝐻
𝑛 (𝑧′)

∫ ℎ
0 𝜌‖𝐔𝑛‖

2d𝑧
, (A.6a)

𝑔𝑛(𝑡) = (𝑡)
sin 𝜔𝑛𝑡
𝜔𝑛

, (A.6b)

where 𝑧′ is the depth location of the impulsive source, 𝐻 is the her-
mitian (or conjugate-transpose) operator,  is the Heaviside unitstep
function, and 𝐔𝑛(𝐤, 𝑧) is the modeshape of the 𝑛th Lamb mode, asso-
ciated with the eigen-angular frequency 𝜔𝑛(𝐤) ≥ 0. Expressed over the
Lamb modes of the plate, the resulting field is then of the form:

𝐮12 = Re

(

∑

𝑛
𝐴±
𝑛 (𝑡)𝐔

±
𝑛 (𝑧)e

−i(𝐤1±𝐤2)𝑇 𝐱

)

, (A.7)

with 𝐔±
𝑛 = 𝐔𝑛(𝐤1±𝐤2). The superscripts ± and the substitution 𝐴2 → 𝐴∗

2
or the ‘‘−’’ case are from now on considered as implicit. The modal
articipation factors divided by the primary amplitudes are:

𝑛(𝐔1,𝐔2,𝐔𝑛) = 𝐹 𝑣𝑜𝑙
𝑛 + 𝐹 𝑠𝑢𝑟𝑓

𝑛 , (A.8a)

𝐹 𝑣𝑜𝑙
𝑛 = 1

2 ∫

ℎ

0
𝐔𝐻
𝑛 𝐅𝑣𝑜𝑙(𝐔1,𝐔2)d𝑧, (A.8b)

𝐹 𝑠𝑢𝑟𝑓
𝑛 = 1

2
𝐔𝐻
𝑛 𝐅𝑠𝑢𝑟𝑓 (𝐔1,𝐔2)|ℎ0 . (A.8c)

As we are not interested in rigid body motions 𝜔𝑛 = 0, the normalizing
term in Eq. (A.6a) can be more conveniently written as the mean modal
energy by multiplying by the halved squared angular frequency:

𝑛(𝐔𝑛, 𝜔𝑛) =
1
2
𝜔2
𝑛 ∫

ℎ

0
𝜌‖𝐔𝑛‖

2d𝑧. (A.9)

The temporal dependence is obtained by convolving the driving func-
tion ei(𝜔1±𝜔2)𝑡 (assumed to be zero for 𝑡 < 0) with the modal propagator
𝑔𝑛(𝑡). Combining terms, we arrive at:

𝐴𝑛(𝑡)
𝐴1𝐴2

=
𝐹𝑛
2𝑛 ∫

𝑡

0
ei(𝜔1±𝜔2)𝜏 sin (𝜔𝑛(𝑡 − 𝜏))𝜔𝑛d𝜏. (A.10)

he sine function can be written as a sum of two exponentials, a form
hich exhibits two separate contributions: a first one associated with
e−i𝜔𝑛(𝑡−𝜏)∕2i which oscillates rapidly and cannot grow significantly,
nd a second one associated with ei𝜔𝑛(𝑡−𝜏)∕2i which can grow without
imit if the resonance condition 𝜔𝑛 = 𝜔1 ±𝜔2 is matched. We shall now
eglect the former and approximate 𝐴𝑛(𝑡) by keeping only the latter:

𝐴𝑛(𝑡)
𝐴1𝐴2

≈

⎧

⎪

⎨

⎪

⎩

i𝛾 (𝑡)1,2,𝑛
ei(𝜔1±𝜔2)𝑡−ei𝜔𝑛𝑡
𝜔𝑛−(𝜔1±𝜔2)

if 𝜔𝑛 ≠ 𝜔1 ± 𝜔2,

𝛾 (𝑡)1,2,𝑛 𝑡 e
i(𝜔1±𝜔2)𝑡 if 𝜔𝑛 = 𝜔1 ± 𝜔2,

(A.11)

where we defined:

𝛾 (𝑡)1,2,𝑛 =
𝜔𝑛𝐹𝑛
4i𝑛

. (A.12)

Finally, if we focus only on the resonance condition and slightly change
the definition of 𝐴𝑛(𝑡) by pulling out the time-harmonic term ei(𝜔1±𝜔2)𝑡

(i.e. we adopt the definition of Eq. (3a)), then Eq. (A.11) becomes
Eq. (3b).

The coefficients 𝛾 (𝑡)1,2,𝑛 express how fast in time two given primary
modes transfer energy into a third mode, and are defined up to an
arbitrary factor that reflects the normalization chosen for the modes.
They are analogous to what is often called ‘‘mixing power’’ in the
literature, although referring to a transfer rate measured in space, along
the propagation axis. The link between both forms is discussed below.
10

𝑈

Correspondence with a representation in space. Let us compare the cou-
pling coefficients as they appear in time and space representations. We
now write the secondary field as:

𝐮12 = Re

(

∑

𝑛
𝐴𝑛(𝐱)𝐔𝑛(𝑧)ei(𝜔1±𝜔2)𝑡

)

. (A.13)

When the phase-matching condition is satisfied, it can be established [6,
9] that:
𝐴𝑛(𝐱)
𝐴1𝐴2

= 𝛾 (𝐱)1,2,𝑛 𝐪
𝑇 𝐱 e−i(𝐤1±𝐤2)𝑇 𝐱 , (A.14)

where

𝛾 (𝐱)1,2,𝑛 =
−i(𝜔1 ± 𝜔2)𝐹𝑛

4𝑛𝑛
, (A.15)

nd 𝐪 = (𝐤1 ± 𝐤2)∕‖𝐤1 ± 𝐤2‖ is the phase direction. In Eq. (A.15) 𝑛𝑛 is
he mean power flux of mode 𝑛 along 𝐪:

𝑛𝑛 = 𝐪𝑇 ∫

ℎ

0
𝐏𝑛𝑛 d𝑧, (A.16)

ith 𝐏𝑛𝑛 = − 1
2Re

(

𝐕𝐻
𝑛 𝐒𝐿(𝐔𝑛)

)

the Poynting vector and 𝐕𝑛 = i(𝜔1±𝜔2)𝐔𝑛

the velocity of the mode. Using the identity ∫ ℎ
0 𝐏𝑛𝑛 d𝑧 = 𝑐𝑒,𝑛𝑛𝐪𝑒,𝑛,

here 𝑐𝑒,𝑛 is the energy (or group) velocity, 𝐪𝑒,𝑛 is a unit vector in
he direction of the energy flux, and 𝑛 is the time-average mechanical
nergy defined in Eq. (A.9), the ratio between both rates of transfer of
nergy can be obtained:

𝛾 (𝑡)1,2,𝑛

𝛾 (𝐱)1,2,𝑛

=
𝑛𝑛
𝑛

= 𝑐𝑒,𝑛𝐪𝑇 𝐪𝑒,𝑛. (A.17)

n other words, the transfer rate per unit space measured in the direc-
ion of energy flux, i.e. by setting 𝐱 = 𝑥𝐪𝑒,𝑛 in Eq. (A.14), is equal to the
ransfer rate per unit time divided by the group velocity.

ppendix B. On the choice of normalization of the modeshapes

mplitude. In scalar models of harmonic generation, the amplitudes of
he components of the displacement field 𝑢 are generally defined as 𝑢 =
𝑖 𝐴𝑖 cos𝜔𝑖(𝑡 − 𝑥∕𝑐). If we stretch this representation into a transverse

pace dimension 𝑧 (call it depth) over a distance ℎ (call it thickness),
e can introduce a trivial modeshape 𝑈𝑖(𝑧) = 1 without changing the
efinition of 𝐴𝑖. The time-average and 𝑧-integrated mechanical energy
arried by such harmonic wave with unit amplitude 𝐴𝑖 = 1 is 𝑖 =
1
2𝜌𝜔

2
𝑖 ∫

ℎ
0 |𝑈𝑖(𝑧)|

2 d𝑧 = 1
2𝜌𝜔

2
𝑖 ℎ, where 𝜌 is the density of the medium.

Now, in the case of an elastic plate of density 𝜌(𝑧), with the purpose of
dealing with coupling constants that have a similar meaning, it seems
natural to require the modeshapes 𝐔𝑖(𝑧) to be normalized such that
their mechanical energy extends the scalar case:

𝑖 =
1
2
𝜔2
𝑖 ∫

ℎ

0
𝜌(𝑧)‖𝐔𝑖(𝑧)‖2 d𝑧 = 1

2
⟨𝜌⟩𝜔2

𝑖 ℎ, (B.1)

where ⟨𝜌⟩ = 1
ℎ ∫ ℎ

0 𝜌d𝑧 is the average density. Note that if the medium is
homogeneous 𝜌(𝑧) = 𝜌, Eq. (B.1) simplifies to requiring 1

ℎ ∫ ℎ
0 ‖𝐔𝑖(𝑧)‖2 d𝑧

= 1.

Phase. Defining the phase of 𝐔𝑖 is also necessary, although the choice
is somewhat more arbitrary. In an isotropic plate, the in-plane and
out-of-plane components of the modeshapes have a phase difference of
±𝜋∕2, and either of them can be chosen to be pure real — this property
applies to any layering of materials belonging to a class of anisotropy
that includes orthotropy [53]. We then chose to require the in-plane
components 𝑈𝑖,𝑥 and 𝑈𝑖,𝑦 to be pure-real. As for the ± sign that remains
to be set, imposing a condition on the 𝑈𝑖,𝑥 and 𝑈𝑖,𝑦 components at 𝑧 = 0
s convenient in that they can be simultaneously null only for 𝐤 = 𝟎 —
his is not the case for 𝑈𝑖,𝑧 which is null for SH modes and cancels
t 𝜔∕𝑘 = 𝑐𝑙 for P-SV modes. We then decide to require 𝑈𝑖,𝑥|𝑧=0 and
𝑖,𝑦|𝑧=0 to be non-negative in the radial and azimuthal directions, i.e.

𝑇

𝑖,𝑥|𝑧=0 ≥ 0 and 𝑈𝑖,𝑦|𝑧=0 ≥ 0 for 𝐤∕‖𝐤‖ = (1 0 0) .
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An example. Applied to the SH modes of an isotropic and homogeneous
plate in the 𝐤∕‖𝐤‖ = (1 0 0)𝑇 phase direction, this definition gives
0 = (0 1 0)𝑇 and 𝐔𝑖 =

√

2 cos(𝑖 𝑧 𝜋∕ℎ) (0 1 0)𝑇 for 𝑖 > 0.

caling of the coupling constants 𝛾 (𝑡)1,2,3 and 𝛽1,2,3 with the plate thickness.
ormalized as described upper, 𝐔𝑖 does not depend on ℎ. Then, one
an see from Eq. (A.9) that 𝑖∕𝜔𝑖 scales as 𝜔𝑖ℎ, that is, does not depend
n ℎ either. Furthermore, by changing to dimensionless coordinates
→ 𝐱̃ = 𝐱∕ℎ and 𝛁 → 1

ℎ𝛁𝐱̃, we see from Eqs. (A.4) and (A.8) that
𝐹𝑛 is proportional to 1∕ℎ2. We then see from Eqs. (A.12) and (4) that
𝛾 (𝑡)1,2,3 scales as 1∕ℎ2 while 𝛽1,2,3 is a constant that only depends on the

ode triplet.
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