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Automated discovery of reprogrammable 
nonlinear dynamic metamaterials

Giovanni Bordiga    1, Eder Medina    1,2, Sina Jafarzadeh    1,3, Cyrill Bösch    1,4, 
Ryan P. Adams    2, Vincent Tournat    1,5 & Katia Bertoldi    1 

Harnessing the rich nonlinear dynamics of highly deformable materials has 
the potential to unlock the next generation of functional smart materials 
and devices. However, unlocking such potential requires effective strategies 
to spatially engineer material architectures within the nonlinear dynamic 
regime. Here we introduce an inverse-design framework to discover flexible 
mechanical metamaterials with a target nonlinear dynamic response. 
The desired dynamic task is encoded via optimal tuning of the full-scale 
metamaterial geometry through an inverse-design approach powered by a 
fully differentiable simulation environment. By deploying such a strategy, 
mechanical metamaterials are tailored for energy focusing, energy splitting, 
dynamic protection and nonlinear motion conversion. Furthermore, 
our design framework can be expanded to automatically discover 
reprogrammable architectures capable of switching between different 
dynamic tasks. For instance, we encode two strongly competing tasks—
energy focusing and dynamic protection—within a single architecture, 
using static precompression to switch between these behaviours. The 
discovered designs are physically realized and experimentally tested, 
demonstrating the robustness of the engineered tasks. Our approach opens 
an untapped avenue towards designer materials with tailored robotic-like 
reprogrammable functionalities.

Effective control over the nonlinear behaviour of material structures 
is essential for various dynamic tasks, including energy harvesting 
from elastic pulses, impact mitigation and mechanical signal process-
ing. Mechanical metamaterials—artificially engineered materials with 
mechanical responses determined by structure rather than composi-
tion—have emerged as a promising platform to achieve such control. 
By carefully arranging specially designed building blocks in space, 
these metamaterials have demonstrated complex functionalities 
such as focusing1, executing mathematical operations2,3 and cloaking 
objects4–6. However, most of the proposed designs operate in the linear 
regime and are optimized for a single functionality.

Recent advancements have highlighted the enormous potential of 
flexible metamaterials in controlling nonlinear waves7,8. By leveraging 

their ability to undergo large deformations, exploit instabilities and 
navigate multi-welled energy landscapes, these systems have dem-
onstrated capabilities such as unidirectional signal propagation9, 
long-range propagation even in the presence of dissipation10 and 
impact mitigation11. Nevertheless, the exploration and rational con-
trol of nonlinear dynamics in flexible mechanical materials is still in its 
early stages, with most studies focused on periodic systems. Designing 
periodic material structures inherently restricts our ability to manipu-
late energy flow through space and time. While it has been shown that 
defects can lead to diverse transmission pathways in the underlying 
lattice12, the placement of these defects has relied on intuition rather 
than systematic approaches. By transitioning to automated design 
strategies, it may be possible to unlock new two-dimensional (2D) 
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surrogate model of the forward response and then optimize over the 
fast surrogate34–37. On the other hand, gradient-based optimization, 
despite being locally convergent, has shown promise when combined 
with large parameter spaces in discovering underlying patterns and 
behaviours38–40. Furthermore, automatic differentiation (AD), com-
monplace in the machine learning field41, has facilitated the calcula-
tion of exact gradients42–45. In mechanics, the additional information 
provided by gradients has proved effective in guiding the design of 
elasto-plastic structures for failure resistance under impact46, tun-
ing Poisson’s ratio at finite strains47, optimizing nonlinearly resonant 
frame structures48,49 and discovering shape-morphing cellular solids50. 
Although these works indicate the great potential of gradient-based 
optimization for nonlinear problems, the rich space of dynamical 
behaviours, especially transient behaviour, in nonlinear mechanical 
metamaterials remains relatively unexplored29.

Here we introduce a framework to automate the design of flexible 
metamaterial structures that can execute desired nonlinear dynamic 
tasks and whose functionality can be reprogrammed on the fly. In par-
ticular, we focus on 2D flexible mechanical metamaterials comprising a 
network of rigid units connected by flexible ligaments (Fig. 1a–d), which 
have gained significant attention due to their ability to exhibit a negative 
effective Poisson’s ratio51,52 and a wide range of target static nonlinear 
mechanical responses53–56, and to support the propagation of solitary 

architectures that can achieve unprecedented control over energy 
flow in the nonlinear regime13.

Optimization is an attractive principle for automated design, and 
it has been largely successful in the identification of metamaterials 
with desired mechanical responses. Despite the well-known limitation 
of local convergence and the additional computational cost of calcu-
lating gradients, gradient-based approaches have been extensively 
applied to structural design problems14–18. For instance, in the linear 
regime, gradient-based optimization has yielded material structures 
exhibiting a maximized relative size of bandgaps19,20, negative effec-
tive properties21,22, directional wave propagation23, mode shaping of 
flexural waves24, topologically protected modes25, minimal dynamic 
compliance26, maximized stiffness in fibre-reinforced composites27 and 
mechanism-like deformations28, among others. However, in the nonlin-
ear regime, significantly less progress has occurred, with efforts mostly 
focused on the use of gradient-free algorithms and machine learning 
approaches. Gradient-free methods based on stochastic search29,30 
and Bayesian optimization31,32 have shown effectiveness in exploring 
the complex energy landscape of flexible metamaterials in the static 
regime. Yet such approaches do not scale to problems involving expen-
sive forward simulations or a large number of design parameters33. 
Similar limitations are faced by approaches based on machine learning 
techniques since they require a large database of simulations to train a 
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Fig. 1 | Automated design of reprogrammable nonlinear dynamic 
metamaterials. a, We focus on 2D flexible mechanical metamaterials comprising 
a network of rigid units connected by flexible ligaments. b,c, Assuming a fixed 
topology for the connections, the dynamic behaviour of the system is governed 
by the rigid-body kinematics of the units (b) and the mechanical response of 
the flexible ligaments (c). d, The metamaterials are physically realized via 3D 
printing of PLA units connected by thin flexible plastic shims. e, Given a high-

level description of the dynamic tasks (for example, energy focusing at target 
locations, protection, motion conversion), the design space of non-periodic 
geometries is explored efficiently through the use of adjoint gradients and a 
gradient-based optimizer while taking fabrication constraints into account  
(that is, lower bounds on the void angle between adjacent units θ0

void, the solid 
angle of the unit θunit and the edge length of the unit e).
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pulses57,58. By leveraging recent advancements in AD42–45, we demon-
strate how the nonlinear dynamic response of these metamaterials can 
be tailored to execute complex tasks such as energy focusing, energy 
splitting, dynamic protection and nonlinear motion conversion (Fig. 1e). 
Additionally, we extend the design framework to create architectures 
capable of seamlessly switching between different tasks. As an example, 
we encode two strongly competing tasks—energy focusing and dynamic 
protection—within a single architecture and harness static precompres-
sion to switch between these behaviours. To demonstrate the robustness 
of the engineered tasks, the discovered designs are physically realized 
and tested. All together, the results presented here highlight the efficacy 
of our framework in enabling the non-electronic encoding of reprogram-
mable nonlinear dynamic tasks in artificial material structures.

Design strategy
To rationally design 2D flexible mechanical metamaterials with target 
nonlinear dynamic responses, we developed a fully differentiable simu-
lation environment that leverages AD tools42,43. This approach automates 
the derivation of the equations of motion from an energy functional 
and, therefore, greatly simplifies the modelling and simulation process. 
Furthermore, it facilitates the inverse design of metamaterials by auto-
matically computing gradients of the solution with respect to any design 
parameter. Our design strategy consists of the following four steps.

Derivation and solution of equations of motion
The response of 2D flexible mechanical metamaterials comprising a 
network of rigid units connected by flexible ligaments can be captured 
using a discrete model comprising rigid units connected at their verti-
ces by a combination of elastic springs54,59 (Fig. 1a–c). In particular, the 
strain energy of the ith ligament is assumed to be of the form

𝒱𝒱i =
1
2 [kℓ(εiℓ

0
i )

2 + kθΔθi
2 + ks(ψiℓ0i )

2
] + 𝒱𝒱c

i , (1)

where kℓ, kθ and ks denote the stiffness of the ligament upon stretching, 
bending and shearing, respectively. Moreover, εi = ℓi/ℓ0i − 1 , with ℓi 
and ℓ0i  being the deformed and rest length of the ith ligament, respec-
tively; Δθi = θ(2)i − θ(1)i , with θ(1)i  and θ(2)i  being the rotation of the two 
units connected to the ligament; and ψi = χi − (θ(1)i + θ(2)i )/2 , with χi 
being the angle between the deformed and undeformed configurations 
of the ligament (Fig. 1c). Finally, 𝒱𝒱c

i  is a differentiable contact model in 
the form of a strain energy term accounting for the contact between 
the rigid units connected by the ith ligament. Such contact energy is 
assumed to be of the form

𝒱𝒱c
i = 1

2kc(θ
void
i − θcut-off)

2
(1 − τ2i )

−1
ℋ (θcut-off − θvoid

i ) , (2)

where θvoid
i = Δθi + θvoid

i,0  with θvoid
i,0  being the rest void angle (Fig. 1e) 

and ℋ  denoting the Heaviside function. Moreover, kc controls the 
initial stiffness of the contact, while the factor (1 – τ2)–1, with 
τ = (θvoid – θcut-off)/(θcut-off – θmin), introduces a vertical asymptote at 
θvoid = θmin to avoid compenetration. θcut-off and θmin define the range of 
active contact with θcut-off being the upper limit and θmin, the lower limit.

The Lagrangian of a metamaterial comprising Nh ligaments and 
Nu rigid units can then be written as

ℒ = 𝒯𝒯 − 𝒱𝒱 𝒯
Nu

∑
i=1

𝒯𝒯i −
Nh

∑
i=1

𝒱𝒱i (3)

where 𝒱𝒱i  is given by equation (1) and 𝒯𝒯i  denotes the kinetic energy of 
the ith rigid unit:

𝒯𝒯i =
1
2 (ρAi ( ̇u2

i + ̇v2i ) + ρIi ̇θ
2
i ) , (4)

where ̇ui, ̇vi and ̇θi are the horizontal, vertical and rotational velocities 
of the centre of mass of the ith unit, and ρAi and ρIi denote the corre-
sponding inertia (Fig. 1b). ρ denotes the mass per unit area, and Ai and 
Ii are the area and moment of area of the ith unit, respectively. We then 
take advantage of AD to take the partial derivatives of ℒ with respect 
to all degrees of freedom of the metamaterial and obtain the 
equations of motion as

d
dt

∂ℒ
∂q̇

− ∂ℒ
∂q

= fext, (5)

where t is time; q = {u1, v1,θ1,… ,uNu , vNu ,θNu } is a vector collecting the 
displacement components of all Nu units; and fext is the external force 
vector. Such an external loading function allows for modelling applied 
excitation fapp as well as dissipation fdamp so that fext = fapp + fdamp. For the 
results shown in this work, we assume displacement-driven loading 
conditions, and hence fapp = 0. Moreover, a simple linear viscous damp-
ing model is assumed so that fdamp = −Cq̇ with C being a diagonal matrix 
with translation and rotation damping coefficients cu and cθ, respec-
tively. As equation (5) is a highly nonlinear system of ordinary differ-
ential equations, we numerically solve for the response q(t) using a 
Dormand–Prince explicit solver with adaptive step size60 (see Sup-
plementary Section 2a for more details).

Our simulation environment fully automates the derivation of 
equation (5) once all the energy functions (equations (1)–(4)) and 
external forcing (fext) are defined as a function of all the relevant inputs. 
This approach provides the flexibility to change the geometry, topol-
ogy and energy functions in a modular fashion.

Definition of the design space
Given that the behaviour of a mechanical metamaterial can be signifi-
cantly altered by the shape of its rigid units35, we choose here to use the 
shape of these rigid units as the design space. Such a design space can 
be parameterized via a vector x collecting the coordinates of vertices 
of the Nu rigid units in the undeformed (reference) configuration. To 
guarantee an identical mechanical response across all ligaments, the 
design space is constrained to maintain a constant rest length ℓ0. The 
reference orientation of the ligaments is also kept constant during 
optimization. These constraints are enforced for the experimental 
convenience of characterizing a single set of hinge parameters, and 
are not fundamental limitations of our design framework. Further-
more, to both avoid infeasible designs and ensure manufacturability, 
we restrict the minimum edge length and vertex angle of the units, 
and constrain the void angle between neighbouring units to be posi-
tive (Supplementary Section 1 for additional details on the geometric 
parameterization and constraints).

Optimization
Finally, we pose the following question: how can we discover a geometry 
that can perform a desired dynamic task such as maximizing or mini-
mizing the kinetic energy at target locations? By computing gradients 
with respect to the geometric parameters x, it becomes possible to 
navigate a design space of much higher dimensionality than would 
be possible with a gradient-free method. For each dynamic task, we 
specify an objective function J(q(t), x) that reflects the efficacy of the 
geometry x in solving that task. Given any design x, we numerically inte-
grate equation (5) and then evaluate such objective function J(q(t), x).  
Furthermore, we take advantage of AD to compute its gradient as

dJ
dx

= ∂J
∂q

∂q
∂x

+ ∂J
∂x

, (6)

where the response q(t) implicitly depends on the design x by means 
of the constraint imposed by equation (5). Note that the gradient term 
∂J/∂x is directly evaluated via AD, while the term ∂J

∂q
∂q
∂x

 is computed by 
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solving the adjoint problem associated with equation (5) using the 
same time integrator60. Finally, dJ/dx is passed to the optimizer to 
update the design x until convergence. To handle nonlinear constraints 
on the design space, required to ensure manufacturability (that is, 
lower bounds on the edge lengths and angles of the units), we adopt 
the Method of Moving Asymptotes61 as the optimizer (provided by the 
NLopt library62; Supplementary Section 2a for more details). This 
optimization algorithm can be readily applied to multitask problems 
by adopting the simple approach of optimizing a convex linear com-
bination (scalarization) of multiple objectives. In particular, we can 
deploy this strategy to design reprogrammable architectures that can 
switch between multiple tasks. In this way, we can discover a range of 
solutions that explore the trade-off between distinct functionalities, 
thus identifying the Pareto front16 (Supplementary Section 2b for more 
details). As a result, our design framework allows us to efficiently 
explore the large space of non-periodic architectures and converge 
to designs that—even if only locally optimal—encode one or multiple 
desired tasks.

Fabrication, characterization and testing
To evaluate the performance of the optimized designs, we fabricate 
them using three-dimensional (3D)-printed polylactic acid (PLA) units 
and thin polyester plastic shims with a rest length of ℓ0 = 2.3 mm 
(Fig. 1d). The mass density used in the 2D model is determined by 
measuring the mass of a representative sample and dividing it by the 
area of the PLA units, obtaining ρ = 6.18 kg m–2. The mechanical behav-
iour of the hinges is systematically investigated by subjecting samples 
(comprising an array of 4 × 4 squares connected by these hinges) to 
tension, compression and shear. The experimental responses closely 
match the model predictions for kℓ = 120 N mm–1, ks = 1.19 N mm–1 and 
kθ = 1.50 N mm. Furthermore, we find that the free oscillations 
of a square unit connected to the ground by a hinge align well with 
the model predictions for damping coefficients cu = 2.9 × 10−2 kg s–1 
and cθ = 1.2 × 10−7 kg m2 s–1. In addition, the contact stiffness is 
assumed to be kc = kθ, and contact angles are chosen as θmin = −15° and 
θcut-off = −10° to prevent excessive overlap (contact) between the 
units. Finally, to ensure manufacturability, the minimum edge length 
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Fig. 2 | Energy focusing. a, The dynamic task of focusing the energy provided by 
a dynamic excitation on the left boundary of the system towards a target location 
is encoded in the metamaterial structure through our gradient-based design 
strategy. Left: a dynamic excitation in the form of pulse of period T = f -1 is applied 
to the material domain and target region (in green) is selected for the focusing 
task. Right: the design evolution during optimization shows the effectiveness of 
the method in identifying the best direction in the huge design space of possible 
architectures (results shown for an input pulse with A = 0.5s = 7.5 mm and 
f = 30 Hz). The 60th design iteration is selected for fabrication and testing (3DP 
stands for 3D printing). b, Simulation snapshots of the spatial distribution of the 

most relevant energy components (shear, bending and kinetic) at t = 13, 27, 34, 40 
and 47 ms. c, Contour plot of the simulated focused energy ratio (integrated 
kinetic energy of the target region compared with elsewhere, that is JΩt /JΩ⧵Ωt) 
for the optimized design as a function of input frequency and amplitude 
predicting robustness with respect to the excitation away from the design point. 
d, Experimental (left) and numerical (right) snapshot of the velocity field at 
t = 55 ms for the optimized structure subject to the input shown in the inset. 
e, Additional experimental excitation signals used in the experiments. 
f, Corresponding evolution of the peak kinetic energy along the white line in d. 
The green shaded area denotes the target focusing region.
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and vertex angle of the units are set as emin = 3 mm and θunit
min = 30∘ , 

respectively.
The fabricated structures are dynamically excited using a 

low-frequency shaker, and the response is recorded with a high-speed 
camera. A tracking algorithm based on digital image correlation is then 
used to reconstruct the displacement field of all the units and compare 
it to the simulated response (Supplementary Sections 4 and 5 for more 
details on fabrication and experimental methods).

Results
Energy focusing
To demonstrate our optimization-based approach, we first seek a 
metamaterial design that directs the kinetic energy provided by a 
large-amplitude pulse towards a target region Ωt (Fig. 2a). To achieve 
this goal, we maximize the time integral of the kinetic energy at Ωt:

JΩt (x) = ∑
i∈Ωt

∫
tf

0
𝒯𝒯i(q(t),x)dt (7)

upon application of a pulse-like excitation on the left edge of the domain 
(region highlighted in red in Fig. 2a). In particular, we focus on a domain 
comprising 24 × 16 units, choose Ωt to be four units located in the upper 
right part of the domain (region highlighted in green in Fig. 2a) and 
consider the following excitation signal:

uinput(t) =
A
2 (1 − cos(2πft))ℋ(1/f − t)ℋ(t), (8)

where A = 7.5 mm and f = 30 Hz control the amplitude and width of the 
single pulse applied to the structure. Note that we choose the upper 
limit of integration in equation (7) to be tf = 2/f, since we have found 
that larger values of integration time lead to a very comparable perfor-
mance, while requiring a higher computational cost (Supplementary 
Fig. 10).

As shown in Fig. 2a, our optimization algorithm quickly alters the 
initial design comprising squares with a centre-to-centre spacing 
s = 15 mm and bias angle θ0 = 25°. Specifically, the algorithm modifies 
the geometry throughout the entire domain, and after approximately 
60 iterations, identifies a design that concentrates JΩt /tf ≈ 10mJ of 
energy in the target area. This represents a more than 400-fold 
enhancement compared with the initial periodic design, which focused 
around ~0.02 mJ in the target area. The optimized design features large 
quadrilaterals within the target region, surrounded by smaller units 
with a high aspect ratio, creating a structure that resembles an elastic 
resonator made of a high-inertia region embedded in a softer surround-
ing environment63. Additionally, a high-density region is situated just 
below the target, and low-density regions are positioned near the four 
corners of the domain. Note that these main geometric features are 
robust with respect to perturbation of the initial design (Supplemen-
tary Fig. 12). To understand the roles played by these regions, we analyse 
the temporal evolution of bending, shear and kinetic energies over this 
optimized design (Fig. 2b). At t = 13 ms, we find that the applied input 
primarily causes shearing of the ligaments in a straight region ahead 
of the excitation point. By t = 34 ms, the applied energy has transferred 
into both shear and bending energies, and the kinetic energy begins 
to focus at the target location. During this energy exchange, the 
high-density region below the target acts as a high-inertia reflection 
area where the kinetic energy gets distributed before being transferred 
towards the target region (Supplementary Video 1). This process con-
tinues until most of the kinetic energy is concentrated at the target, 
and very low strain energy is present elsewhere, resulting in a signifi-
cant focusing event at the desired location (t = 40 ms). The exchange 
mechanism between the kinetic energy in the target area and the strain 
energy in the rest of the domain continues until all the energy is 
dissipated.

Next, we investigate the robustness of the optimized design with 
respect to different input pulses. Towards this end, we simulate its 
response upon the application of inputs with A ∈ [0.1, 0.9]s = [1.5, 
13.5] mm and f ∈ [20, 55] Hz. In Fig. 2c we report the integral of the 
energy focused on the target region (Ωt) compared with the rest of the 
domain (Ω\Ωt), JΩt /JΩ⧵Ωt, for all the considered inputs. Notably, we 
observe that a comparable focusing performance is attained for inputs 
within a substantial region surrounding the input considered in the 
optimization (Supplementary Section 3a for more analysis on robust-
ness). This robustness with respect to different excitation signals is a 
key prerequisite for experimental validation.

To experimentally demonstrate the focusing task, we fabricate 
the optimized design and dynamically excite it using a low-frequency 
shaker. In these experiments, the input excitation is extracted via digital 
image correlation tracking of the units connected to the shaker and 
then fed into our simulations for comparison. In Fig. 2d we report 
experimental and numerical snapshots at t = 55 ms when the structure 
is excited with the signal shown in the inset (with peak displace-
ment ~9 mm). We find very good agreement between experiments and 
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desired compression levels, ε1 = 2% (left) and ε2 = 5% (right), for the best 
equal-performance design (highlighted by the blue star marker in b). d, Evolution 
of the average kinetic energy at the target regions Ωt1 and Ωt2 as a function of the 
applied precompression. e, Spatial distribution of contacts at the two desired 
compression levels, ε1 = 2% (left) and ε2 = 5% (right).
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simulations, with a velocity magnitude that is largest in the target 
region. Furthermore, to assess the robustness of the focusing perfor-
mance experimentally, we excite the optimized structure with input 
signals of varying amplitudes (Fig. 2e). In Fig. 2f, we present the peak 
kinetic energy, maxt 𝒯𝒯i , along the white line in Fig. 2d for the three 
considered inputs. Notably, a clear concentration of kinetic energy 
exists at the specified target region (green shaded area), affirming the 
efficacy of the focusing mechanism.

This example of energy focusing design demonstrates how our 
strategy can discover geometries that channel energy towards a 
desired location without requirements on energy distribution any-
where else. More control over the spatial localization of energy can 
be achieved by generalizing this problem to multiple focusing loca-
tions. With such a strategy, we can design metamaterial architectures 
capable of splitting the input energy among specified target regions 
of space and doing so with a desired splitting ratio (Supplementary 
Section 3c). Additional results on the ‘dual’ problem of energy focus-
ing at a single target area when the metamaterial is excited at different 
independent locations are reported in Supplementary Section 3d 
(Supplementary Fig. 5 and Supplementary Video 5). Furthermore, 
results demonstrating that our framework is applicable to arbitrary 
geometric spaces are reported in Supplementary Section 3f, show-
ing the energy focusing design of a non-periodic metamaterial with 
a kagome-like topology (Supplementary Fig. 7 and Supplementary 
Video 6).

Reprogramming focusing location
In Fig. 2, we identified a design capable of concentrating the input 
energy at a specified location. Real-world challenges, however, often 
necessitate a tunability of the task. Crucially, we can harness the high 

deformability of metamaterials to achieve such reprogrammability 
within a single architecture.

To illustrate this concept, we search for a metamaterial that can 
selectively focus energy in two distinct locations depending on the 
level of applied precompression. Specifically, we seek a 24 unit × 18 unit 
design that can focus energy in the target region Ωt1 when vertically 
precompressed by ε1 = 2% and in the region Ωt2 when the precompres-
sion is increased to ε2 = 5% (Fig. 3a). To identify such an architecture, 
we maximize the following objective function:

J = w1 J1 +w2 J2 (9)

where Ji = J (εi)
Ωti

 (i = 1, 2) is given by equation (7) computed on the struc-
ture precompressed by εi, and wi ≥ 0 denotes the weight associated 
with the ith objective. Each objective J (εi)

Ωti
 is computed through a 

simulation involving two steps. In the initial step, a quasi-static com-
pressive strain εi is applied by gradually displacing the top and bottom 
rows of the structure vertically. This is followed by a subsequent step 
where a dynamic pulse, defined by equation (8) with A = 7.5 mm and 
f = 30 Hz, is applied to the left edge (as indicated by the red arrows in 
Fig. 3a). To systematically sample the Pareto front of this multi-objective 
problem, we maximize equation (9) with w1 ∈ [0, 1] and w2 = 1 − w1 and 
track Ji for each design in the optimization. Note that, to enhance the 
resolution of the Pareto front, we consider five initial designs with 
θ0 ∈ [15, 35]° for each weight combination (Supplementary Section 2b 
for more details on the Pareto sampling).

In Fig. 3b, we report J (ε1)
Ωt1

/tf  and J (ε2)
Ωt2

/tf  for all the designs visited 
during optimization (each design point is coloured with a grey-to- 
orange gradient according to its distance from the origin). The resulting 
Pareto front (orange dashed line) delineates a set of optimal, physically 
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Fig. 4 | Reprogramming functionality. a, We search for a metamaterial 
architecture with the ability to maximize kinetic energy at a target location for an 
applied precompression of ε1 = 1% (top) and minimize it for ε2 = 8% (bottom). b, All 
designs visited during optimization (grey points) plotted in the objective space 
J(ε1)
Ωt

/tf − J(ε2)
Ωt

/tf. The resulting Pareto front is highlighted by the orange dashed 
line. c, Experimental snapshots of the fabricated design (marked by a blue star in b) 

when subject to a pulse-like excitation (shown in the insets) applied by a low-
frequency shaker at ε1 = 1% (top row) and ε2 = 8% (bottom row). d, Peak kinetic 
energy profiles on a horizontal section across the target region (while line in c) for 
different levels of applied precompression. e, Simulated spatial distribution of 
contacts (top row) and corresponding kinetic energy distribution (bottom row) at 
the two desired compression levels, ε1 = 1% (left column) and ε2 = 8% (right column).
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realizable designs that exhibit diverse performance trade-offs in focus-
ing at the two target locations. Additionally, it demonstrates that our 
optimization can always improve the performance of the starting 
design. In Fig. 3c, we focus on a design on the sampled Pareto front for 
which J (ε1)

Ωt1
≈ J (ε2)

Ωt2
 (highlighted by the blue star marker in Fig. 3b) and 

plot the time-averaged kinetic energy for ε1 = 2% (left) and ε2 = 5% 
(right). The two energy maps clearly show the switch between the two 
tasks at the desired precompression levels. Additionally, in Fig. 3d we 
report the time-averaged kinetic energy at Ωt1 (continuous red line) 
and Ωt2 (dashed red line) as a function of the applied precompression 
for ε ∈ [0, 9]%. We find that as the applied precompressive strain is 
increased, the focused kinetic energy smoothly shifts from Ωt1 (continu-
ous red line) to Ωt2 (dashed red line). Interestingly, we find that the 
optimization algorithm exploits contact between the quadrilateral 
units to achieve such a shift. As shown in Fig. 3e, at ε = 2%, only two pairs 
of units are in contact. By contrast, at ε = 5%, not only do more units get 
in contact, but they also form a contact chain that connects Ωt1 and Ωt2. 
The added stiffness of this contact chain limits the motion of Ωt1 and 
ultimately causes the incoming energy to deflect towards the lower 
part of the domain, effectively exciting Ωt2 (Supplementary Video 2). 
Remarkably, the full differentiability of our model, which accounts for 
contact, allows us to discover such a contact-based switching mecha-
nism in an automated fashion.

Reprogramming functionality
The results of Fig. 3 demonstrate that our design strategy can discover 
metamaterials with a programmable focusing location. Here we pose 
a more challenging question: is our design space rich enough to allow 
a single metamaterial structure to perform antagonistic tasks? To 
answer this question, we deploy our design strategy to search for a 

metamaterial architecture with the ability to maximize kinetic energy 
at a target location Ωt for an applied precompression of ε = ε1 and to 
minimize it for ε = ε2 (Fig. 4a). This multitask problem is solved by maxi-
mizing the objective function of equation (9) with Ωt1 = Ωt2 = Ωt, and 
with w1 ∈ [0, 1] and w2 = w1 − 1 ∈ [−1, 0] for the tasks of energy maximi-
zation and minimization, respectively. Figure 4 displays results for a 
domain consisting of 24 units × 18 units under identical excitation as 
that considered in Fig. 3, with ε1 = 1% and ε2 = 8%. The Pareto front sam-
pling for this problem is shown in Fig. 4b. The majority of the explored 
designs (grey markers) demonstrate a combination of low-focusing and 
high-protection capabilities. This suggests that, within the metamate-
rial design space considered and for the considered target location, 
it is comparatively easier to design for energy minimization than for 
energy maximization.

To verify the robustness of the identified optimal designs, we 
fabricate and test a design on the Pareto front with a focusing-to- 
protection performance ratio of about 25 (that is, J (ε1)

Ωt
≈ 25J (ε2)

Ωt
; blue 

star marker in Fig. 4b). We use linear stages connected to the units at 
the top and bottom rows to apply the desired level of precompression 
and then dynamically excite the preloaded sample using a low-frequency 
shaker. In Fig. 4c we report experimental snapshots of the sample 
precompressed by ε1 = 1% (top) and ε2 = 8% (bottom) after dynamic 
excitation, with each quad coloured according to the measured velocity 
magnitude. In full agreement with the predictions of the model, we find 
a high velocity region around the target when the sample is precom-
pressed by ε1 with a peak of 0.72 m s–1 observed at the target at t = 61 ms 
(Supplementary Video 3 reports the experimental and simulated 
dynamic response of this optimized structure). By contrast, the velocity 
remains lower than 0.41 m s–1 within the entire domain when the struc-
ture is precompressed by ε2. The efficiency of the design in transitioning 
from focusing to protection as the applied precompression increases 
is further apparent in Fig. 4d. Here we plot the peak kinetic energy 
extracted along a horizontal section across the target region for varying 
levels of applied precompression. In addition to a good agreement 
between experiments (dashed lines) and simulations (solid lines), the 
data indicate a consistent decrease in peak kinetic energy within the 
target region (shaded grey area) as the applied precompression 
increases. Notably, for ε > 8%, the peak kinetic energy is markedly low. 
In this instance as well, we observe that the optimization algorithm uses 
contact to switch between the two tasks (Fig. 4e). At ε = ε1, no units are 
in contact. However, at ε = ε2, the units in the target region and numer-
ous units behind it come into contact, resulting in a ‘jammed’ state. We 
can interpret the formation of these jammed regions as the attempt of 
the optimization to locally tune the effective mass density and stiffness 
to effectively engineer a switch in the dynamic response. In fact, the 
jammed areas correspond to the regions that, compared with the rest 
of the domain, undergo a sharp transition from a high kinetic energy 
at ε1 to a low kinetic energy response at ε2 (Fig. 4e, bottom row).

Discussion and outlook
This study has introduced an automated design framework for iden-
tifying non-periodic metamaterials capable of intricate nonlinear 
dynamic tasks. Crucially, the resulting optimized architectures feature 
non-trivial geometries that could not be guessed or intuited a priori, 
highlighting the potential of our design framework for discovering 
material responses in an automated fashion. Moreover, we have dem-
onstrated the extensibility of this framework to include reprogram-
mability, facilitating encoding and switching between multiple tasks 
by leveraging the inherent flexibility of the structures.

While our emphasis in this work has centred on converting 
large-amplitude pulses into controlled energy flow within metamate-
rial domains, the framework can be readily extended to accommodate 
various types of excitation signals and to identify architectures that sup-
port a broad spectrum of functionalities. As an example, in Fig. 5 we con-
sider the design of a metamaterial that transforms a linearly polarized 
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large-amplitude harmonic input into an approximately circularly polar-
ized motion at a specified target region. An architecture capable of anti-
clockwise motion is identified by maximizing the angular momentum 
of a target region with respect to a desired point. By contrast, achieving 
clockwise motion involves minimizing the angular momentum (Sup-
plementary Section 3e for details, and Supplementary Video 4).

All together, the results presented here indicate that the proposed 
framework holds promise in identifying metamaterials capable of com-
plex transient as well as steady-state dynamic behaviours in response 
to simple actuation inputs. We envision this paving the way for matter 
that can transform simple applied excitations into complex motions 
in specific regions. The reprogrammability of the behaviours could 
be further augmented by enabling simple task selection strategies 
through changes in excitation frequency, or variations in loading loca-
tion. In summary, we envisage the resulting design paradigm being able 
to turn mechanical metamaterials into a rich robotic matter platform 
for generating soft material embodiments with reconfigurable func-
tionalities. Our platform can facilitate the development of adaptable 
robotic systems, where part of the ‘intelligence’ is integrated directly 
into their body, thereby reducing the need for actuators and simplify-
ing complex electronic controls.

Building on these capabilities, our platform can lead to impactful 
applications in robotics, tunable vibration control and large-amplitude 
impact mitigation, as well as energy harvesting in highly deformable 
structures.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41563-024-02008-6.

References
1.	 Ma, G. & Sheng, P. Acoustic metamaterials: from local resonances 

to broad horizons. Sci. Adv. 2, e1501595 (2016).
2.	 Zangeneh-Nejad, F., Sounas, D. L., Alù, A. & Fleury, R. Analogue 

computing with metamaterials. Nat. Rev. Mater. 6, 207–225 (2021).
3.	 Silva, A. et al. Performing mathematical operations with 

metamaterials. Science 343, 160–163 (2014).
4.	 Zhang, S., Xia, C. & Fang, N. Broadband acoustic cloak for 

ultrasound waves. Phys. Rev. Lett. 106, 024301 (2011).
5.	 Stenger, N., Wilhelm, M. & Wegener, M. Experiments on elastic 

cloaking in thin plates. Phys. Rev. Lett. 108, 014301 (2012).
6.	 Xue, Y. & Zhang, X. Self-adaptive acoustic cloak enabled by  

soft mechanical metamaterials. Extreme Mech. Lett. 46, 101347 
(2021).

7.	 Deng, B., Raney, J. R., Bertoldi, K. & Tournat, V. Nonlinear waves 
in flexible mechanical metamaterials. J. Appl. Phys. 130, 040901 
(2021).

8.	 Patil, G. U. & Matlack, K. H. Review of exploiting nonlinearity in 
phononic materials to enable nonlinear wave responses. Acta 
Mech. 233, 1–46 (2022).

9.	 Nadkarni, N., Arrieta, A. F., Chong, C., Kochmann, D. M. & Daraio, 
C. Unidirectional transition waves in bistable lattices. Phys. Rev. 
Lett. 116, 244501 (2016).

10.	 Raney, J. R. et al. Stable propagation of mechanical signals in soft 
media using stored elastic energy. Proc. Natl Acad. Sci. USA 113, 
9722–9727 (2016).

11.	 Yasuda, H. et al. Origami-based impact mitigation via rarefaction 
solitary wave creation. Sci. Adv. 5, eaau2835 (2019).

12.	 Jin, L. et al. Guided transition waves in multistable mechanical 
metamaterials. Proc. Natl Acad. Sci. USA 117, 2319–2325 (2020).

13.	 Zaiser, M. & Zapperi, S. Disordered mechanical metamaterials. 
Nat. Rev. Phys. 5, 679–688 (2023).

14.	 Bendsøe, M. P. & Sigmund, O. Topology Optimization: Theory, 
Methods, and Applications (Springer, 2004).

15.	 Sigmund, O. & Maute, K. Topology optimization approaches. 
Struct. Multidiscip. Optim. 48, 1031–1055 (2013).

16.	 Osanov, M. & Guest, J. K. Topology optimization for architected 
materials design. Annu. Rev. Mater. Res. 46, 211–233 (2016).

17.	 Wu, J., Sigmund, O. & Groen, J. P. Topology optimization of 
multi-scale structures: a review. Struct. Multidiscip. Optim. 63, 
1455–1480 (2021).

18.	 van Dijk, N. P., Maute, K., Langelaar, M. & van Keulen, F. Level-set 
methods for structural topology optimization: a review. Struct. 
Multidiscip. Optim. 48, 437–472 (2013).

19.	 Sigmund, O. & Jensen, J. S. Systematic design of phononic 
band-gap materials and structures by topology optimization. 
Philos. Trans. R. Soc. A 361, 1001–1019 (2003).

20.	 Liu, W., Yoon, G. H., Yi, B., Choi, H. & Yang, Y. Controlling wave 
propagation in one-dimensional structures through topology 
optimization. Comput. Struct. 241, 106368 (2020).

21.	 Dong, H. W., Zhao, S. D., Wang, Y. S. & Zhang, C. Topology 
optimization of anisotropic broadband double-negative elastic 
metamaterials. J. Mech. Phys. Solids 105, 54–80 (2017).

22.	 Li, Y. F., Meng, F., Zhou, S., Lu, M. H. & Huang, X. Broadband 
all-angle negative refraction by optimized phononic crystals.  
Sci. Rep. 7, 7445 (2017).

23.	 He, J. & Kang, Z. Achieving directional propagation of elastic 
waves via topology optimization. Ultrasonics 82, 1–10 (2018).

24.	 Capers, J. Inverse design of thin-plate elastic wave devices. Phys. 
Rev. Appl. 20, 034064 (2023).

25.	 Bösch, C., Dubček, T., Schindler, F., Fichtner, A. & Serra-Garcia, M. 
Discovery of topological metamaterials by symmetry relaxation 
and smooth topological indicators. Phys. Rev. B 102, 241404 
(2020).

26.	 Jensen, J. S. Topology optimization of dynamics problems with 
Padé approximants. Int. J. Numer. Methods Eng. 72, 1605–1630 
(2007).

27.	 Boddeti, N., Tang, Y., Maute, K., Rosen, D. W. & Dunn, M. L. 
Optimal design and manufacture of variable stiffness laminated 
continuous fiber reinforced composites. Sci. Rep. 10, 16507 
(2020).

28.	 Wu, K., Sigmund, O. & Du, J. Design of metamaterial mechanisms 
using robust topology optimization and variable linking scheme. 
Struct. Multidiscip. Optim. 63, 1975–1988 (2021).

29.	 Fraternali, F., Porter, M. A. & Daraio, C. Optimal design of 
composite granular protectors. Mech. Adv. Mater. Struct. 17, 1–19 
(2009).

30.	 Oliveri, G. & Overvelde, J. T. Inverse design of mechanical 
metamaterials that undergo buckling. Adv. Funct. Mater. 30, 
1909033 (2020).

31.	 Bessa, M. A., Glowacki, P. & Houlder, M. Bayesian machine 
learning in metamaterial design: fragile becomes 
supercompressible. Adv. Mater. 31, 1904845 (2019).

32.	 Mo, C., Perdikaris, P. & Raney, J. R. Accelerated design of 
architected materials with multifidelity Bayesian optimization.  
J. Eng. Mech. 149, 04023032 (2023).

33.	 Martins, J. R. R. A. & Ning, A. Engineering Design Optimization 1st 
edn (Cambridge Univ. Press, 2021).

34.	 Yang, Z., Yu, C. H. & Buehler, M. J. Deep learning model to predict 
complex stress and strain fields in hierarchical composites. Sci. 
Adv. 7, eabd7416 (2021).

35.	 Deng, B. et al. Inverse design of mechanical metamaterials with 
target nonlinear response via a neural accelerated evolution 
strategy. Adv. Mater. 34, 2206238 (2022).

36.	 Lew, A. J., Jin, K. & Buehler, M. J. Designing architected materials 
for mechanical compression via simulation, deep learning, and 
experimentation. npj Comput. Mater. 9, 80 (2023).

http://www.nature.com/naturematerials
https://doi.org/10.1038/s41563-024-02008-6


Nature Materials

Article https://doi.org/10.1038/s41563-024-02008-6

37.	 Cheng, X. et al. Programming 3D curved mesosurfaces using 
microlattice designs. Science 379, 1225–1232 (2023).

38.	 Silver, D. et al. A general reinforcement learning algorithm that 
masters chess, shogi, and Go through self-play. Science 362, 
1140–1144 (2018).

39.	 Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed 
neural networks: a deep learning framework for solving forward 
and inverse problems involving nonlinear partial differential 
equations. J. Comput. Phys. 378, 686–707 (2019).

40.	 Fawzi, A. et al. Discovering faster matrix multiplication algorithms 
with reinforcement learning. Nature 610, 47–53 (2022).

41.	 Baydin, A. G., Pearlmutter, B. A., Radul, A. A. & Siskind, J. M. 
Automatic differentiation in machine learning: a survey. J. Mach. 
Learn. Res. 18, 1–43 (2018).

42.	 Bradbury, J. et al. JAX: composable transformations of 
Python+NumPy programs (Google, 2018).

43.	 Schoenholz, S. S. & Cubuk, E. D. JAX, M.D.: a framework for 
differentiable physics. In Proc. 34th International Conference 
on Neural Information Processing Systems 11428–11441 (Curran 
Associates, 2020).

44.	 Minkov, M. et al. Inverse design of photonic crystals through 
automatic differentiation. ACS Photon. 7, 1729–1741 (2020).

45.	 Goodrich, C. P., King, E. M., Schoenholz, S. S., Cubuk, E. D. 
& Brenner, M. P. Designing self-assembling kinetics with 
differentiable statistical physics models. Proc. Natl Acad. Sci. USA 
118, e2024083118 (2021).

46.	 Akerson, A. Optimal structures for failure resistance under 
impact. J. Mech. Phys. Solids 172, 105172 (2023).

47.	 Wang, F. Systematic design of 3D auxetic lattice materials with 
programmable Poisson’s ratio for finite strains. J. Mech. Phys. 
Solids 114, 303–318 (2018).

48.	 Dou, S., Strachan, B. S., Shaw, S. W. & Jensen, J. S. Structural 
optimization for nonlinear dynamic response. Philos. Trans. R. 
Soc. A 373, 20140408 (2015).

49.	 Li, L. L. et al. Tailoring the nonlinear response of MEMS resonators 
using shape optimization. Appl. Phys. Lett. 110, 081902 (2017).

50.	 Oktay, D., Mirramezani, M., Medina, E. & Adams, R. P. 
Neuromechanical autoencoders: learning to couple elastic and 
neural network nonlinearity. In Proc. International Conference on 
Learning Representations (ICLR, 2023).

51.	 Grima, J. N. & Evans, K. E. Auxetic behavior from rotating squares. 
J. Mater. Sci. Lett. 19, 1563–1565 (2000).

52.	 Cho, Y. et al. Engineering the shape and structure of materials by 
fractal cut. Proc. Natl Acad. Sci. USA 111, 17390–17395 (2014).

53.	 Celli, P. et al. Shape-morphing architected sheets with 
non-periodic cut patterns. Soft Matter 14, 9744–9749 (2018).

54.	 Coulais, C., Kettenis, C. & van Hecke, M. A characteristic 
length scale causes anomalous size effects and boundary 
programmability in mechanical metamaterials. Nat. Phys. 14, 
40–44 (2018).

55.	 Czajkowski, M., Coulais, C., van Hecke, M. & Rocklin, D. Z. 
Conformal elasticity of mechanism-based metamaterials.  
Nat. Commun. 13, 211 (2022).

56.	 Zheng, Y., Niloy, I., Tobasco, I., Celli, P. & Plucinsky, P. Modelling 
planar kirigami metamaterials as generalized elastic continua. 
Proc. R. Soc. A 479, 20220665 (2023).

57.	 Deng, B., Mo, C., Tournat, V., Bertoldi, K. & Raney, J. R. Focusing 
and mode separation of elastic vector solitons in a 2D soft 
mechanical metamaterial. Phys. Rev. Lett. 123, 024101 (2019).

58.	 Yasuda, H., Korpas, L. M. & Raney, J. R. Transition waves 
and formation of domain walls in multistable mechanical 
metamaterials. Phys. Rev. Appl. 13, 054067 (2020).

59.	 Deng, B., Raney, J. R., Tournat, V. & Bertoldi, K. Elastic vector 
solitons in soft architected materials. Phys. Rev. Lett. 118, 204102 
(2017).

60.	 Dormand, J. & Prince, P. A family of embedded Runge–Kutta 
formulae. J. Comput. Appl. Math. 6, 19–26 (1980).

61.	 Svanberg, K. The method of moving asymptotes—a new method 
for structural optimization. Int. J. Numer. Methods Eng. 24, 
359–373 (1987).

62.	 Johnson, S. G. The NLopt nonlinear-optimization package. GitHub 
http://github.com/stevengj/nlopt (2007).

63.	 Liu, Z. et al. Locally resonant sonic materials. Science 289, 
1734–1736 (2000).

Publisher’s note Springer Nature remains neutral with regard  
to jurisdictional claims in published maps and institutional  
affiliations.

Springer Nature or its licensor (e.g. a society or other partner)  
holds exclusive rights to this article under a publishing  
agreement with the author(s) or other rightsholder(s); author 
self-archiving of the accepted manuscript version of this article is 
solely governed by the terms of such publishing agreement and 
applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 
2024

http://www.nature.com/naturematerials
http://github.com/stevengj/nlopt


Nature Materials

Article https://doi.org/10.1038/s41563-024-02008-6

Methods
Differentiable simulation
The core element to our strategy is a custom-developed simulation 
environment for discrete mechanical metamaterials implemented in 
JAX (ref. 42). This implementation allows for arbitrary parameteriza-
tion of the following:

	 (1)	 2D geometric patterns comprising rigid polygons connected by 
deformable ligaments; the examples of non-periodic quads and 
non-periodic kagome patterns are detailed in Supplementary 
Section 1

	 (2)	 Elastic couplings defining the mechanical response of the liga-
ments, for example, the strain energy given by equation (1)

	 (3)	 External loading fext appearing at the right-hand side of the 
equation of motion, equation (5)

As all these ingredients are implemented in JAX, the resulting map-
ping between geometry, ligament parameters, loading parameters and 
the response of the system is differentiable. This allows us to derive 
gradients of the objective function in an automated fashion. In particu-
lar, reverse-mode AD has been used in all the optimizations presented 
in this work. Gradients of the design constraints (lower bounds on the 
edge lengths and angles of the units) are also computed using the same 
technique. The computation of all of these gradients is then coupled 
to the Method of Moving Asymptotes61 to perform design updates. In 
the case of multitask problems, we adopt the scalarization method. 
More details on multitask optimization and Pareto front analysis are 
provided in Supplementary Section 2. Information on the sensitivity 
of the optimized design with respect to loading parameters and initial 
design are detailed in Supplementary Section 3a,i.

Fabrication
The structures used in all the experiments are fabricated via a custom 
assembly process involving 3D printing of PLA units and laser cutting of 
plastic shims. More details about the fabrication process are provided 
in Supplementary Section 4.

Experimental methods
Parameter identification. The stiffness parameters characterizing the 
flexible ligaments have been identified via uniaxial quasi-static testing 
of small 4 unit × 4 unit square samples subject to tension, compression 
and shear. The fitted stiffness parameters are then validated against the 
response of an 8 unit × 8 unit quad random sample. The viscous damp-
ing coefficients are estimated via the logarithmic decrement method 
on free oscillating samples of a square unit connected to ground by a 
flexible ligament. More details on the characterization experiments 
and procedures are provided in Supplementary Section 5a.

Dynamic testing and video analysis. The fabricated structures are 
excited using a low-frequency shaker, and their dynamics are recorded 
by a high-speed camera. A custom image processing code based on 
digital image correlation is used to track the motion of the units. More 
details on the experimental procedures used for dynamic testing 

and the image tracking analysis are summarized in Supplementary  
Section 5b,c.

Data availability
All the data necessary to reproduce the findings in this work are avail-
able via Zenodo at https://doi.org/10.5281/zenodo.12823471 (ref. 64).

Code availability
All the source code developed for this work is available on GitHub at 
https://github.com/bertoldi-collab/DifFlexMM.
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