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Summary

The acoustical response of 90 degree sharp bends to acoustical perturbations in the absence of a main flow is

considered. The aeroacoustical response of these bends is presented in part II [1]. The bends considered have

a sharp 90 degree inner edge and have either a sharp or a rounded outer corner. They are placed in pipes with

either a square cross-section (2D-bends) or a circular cross-section (3D-bends). The acoustical performance of a

numerical method based on the non-linear Euler equations for two-dimensional inviscid and compressible flows

is checked and its ability to predict the response of 3D-bends is investigated. The comparison between 2-D and 3-

D data is made for equal dimensionless frequencies where is the frequency of the acoustical perturbations

and is the cut-off frequency of the bends. In the case of a bend with a sharp inner edge and a sharp outer corner,

the 2-D numerical predictions agree with 2-D analytical data obtained from a mode expansion technique and with

2-D experimental data from literature and our own 3-D experimental results. In the case of a bend with a sharp

inner edge and a rounded outer corner, the 2-D numerical simulations predict accurately the 2-D experimental

data from literature. However, the 2-D numerical predictions do not agree with our 3-D experimental data. The

acoustical response of 3D-bends appears to be independent of the shape of the outer corner. This behavior is quite

unexpected.

PACS no. 43.20.Mv, 43.20.Ra, 43.20.Fn

1. Introduction

Bends are common in pipe systems. They are often used to

keep long devices, as encountered in gas-transport systems

or in wind musical instruments, reasonably compact.

The acoustical effect of the presence of a bend in a pipe

with a square cross-section has been investigated by Ros-

tafinski [2, 3, 4], Cummings [5] and Félix [6]. Analyti-

cal models to predict the acoustic wave scattering in a

sharp bend have been proposed as early as 1947. Miles

[7] proposed a transmission line approach (equivalent to

a modal analysis). Lippert [8] compared his experimental

results with a single mode approximation of Miles’ theory

[7]. Thompson [9] and Bruggeman [10] used a matched

asymptotic expansion technique. At low frequencies, this

matched asymptotic method reduces to the calculation of

the incompressible potential flow in the bend, which can

be done by means of conformal mapping. As explained

by Bruggeman [10], this approach provides a much better

description of the flow near edges than a mode expansion

method.
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This paper is devoted to a test of a numerical

method1 based on the non-linear Euler equations for two-

dimensional inviscid and compressible flow and the ques-

tion whether such a method can be used to predict the

response of more complex three-dimensional bends and

the effect of a main flow on this response. In this paper

the acoustical performance of the method for a quiescent

uniform reference state of the fluid is checked. Numerical

predictions of the aeroacoustical behavior of bends, that

is their response to acoustical waves in the presence of a

main flow, are presented in a companion paper (part II [1]).

Different methods are used to extract far-field information

from numerical results. An extraction method which de-

termines the one-dimensional acoustic waves by means of

a Fast Fourier Transform of the time-dependent pressure

and velocity signals can be used. The second method of

extraction is based on an integral formulation. Comparison

between the results obtained by means of the two methods

provides insight into the accuracy of our calculations.

In practice, most pipes have circular cross sections, and

the bend flow is not two-dimensional. Bends in pipes with

1 The EIA code (‘Euler code for Internal Aeracoustics’) was developed

by Hulshoff in the framework of the European project Flodac (BRPR

CT97-0394).
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circular cross-sections have been studied by Keefe and Be-

nade [11]. They measured the inertance and the transition

correction between the bend and the straight pipe. Félix

[12] presents results obtained by means of a mode ex-

pansion method. Nederveen [13] calculated the inertance

change in a 3D-bend by decomposing the cross-section of

the bend into parallel (independent) thin layers, that is a

decomposition in parallel 2D-bends. By integration over

the cross-sectional area of the 3D-bend, he obtained a pre-

diction of the inertance in the limit of low frequencies for

bends with a radius of curvature (where is

the pipe diameter and is the radius of curvature taken on

the pipe axis). His results are in good agreement with 3-D

numerical calculations and experimental results. Our aim

is to further explore the validity of such an approach. The

particular case of a bend with a sharp inner edge is consid-

ered. This corresponds to a radius of curvature .

Another possibility of using two-dimensional models as

approximate solutions for such 3-D configurations is also

explored. 2-D and 3-D data are assumed to correspond to

each other for equal dimensionless frequency . The

2-D numerical data are compared to our own 3-D experi-

mental data obtained by measuring the response of bends

with circular cross sections. The measurements have been

carried out by means of a two-source method. This method

is described by Åbom [14], Ajello [15] and Durrieu [16]).

Figure 1 shows a scheme of the bends considered. They

all have a sharp 90 degree inner edge and are placed

in pipes with either a square cross-section (2D-bends)

or a circular cross-section (3D-bends). Strictly speaking,

the data for pipes with a square cross-section are three-

dimensional but they are expected to be accurately de-

scribed by a two-dimensional theory. Bends in such pipes

are therefore referred as 2D-bends in comparison with

bends in pipes with circular cross-section (3D-bends). For

each type of pipes, bends with either a sharp or a rounded

outer corner are considered. The aeroacoustical response

of these configurations in the presence of a main flow will

be considered in a companion paper (part II [1]). The tur-

bulence noise production of the same bends is discussed

by Gijrath [17] and Nygård [18]. The work of Nygård [18]

includes the effect of the interaction between two succes-

sive bends on turbulent noise production.

Our study is restricted to the acoustic response of the

bends at frequencies below the cut-off frequency .

This implies that only plane waves propagate along the

pipe segments 1 upstream and 2 downstream of the bends

(Figure 1). Under these circumstances, it is convenient to

express the bend response in terms of the scattering matrix

[14] defined in section 2.

The acoustical response of bends with a sharp inner

edge in a pipe with square cross sections (bend A and bend

B, Figure 1) has been measured by Lippert [8]. For the

bend with a sharp inner edge and a sharp outer corner,

the acoustical response is predicted by means of the mode

expansion proposed by Miles [7]. We use more modes than

the single mode approximation used by Lippert [8]. This

provides a better approximation of the exact solution.

-
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Figure 1. 90 degree sharp-edged bends considered in the study.

Bend A: Bend with a sharp inner edge and a sharp outer corner

(square cross sections); Bend B: Bend with a sharp inner edge

and a rounded outer corner (square cross sections) ( );

Bend C: Bend with a sharp inner edge and a sharp outer corner

(circular pipes); Bend D: Bend with a sharp inner edge and a

rounded outer corner (circular pipes) ( ). Note the con-

vention chosen for the axis direction and the reference planes for

the determination of the phases (planes for the pipe seg-

ment 1 and for the pipe segment 2).

Theoretical models are described in section 2. The nu-

merical method is presented in section 3. The experimen-

tal method for measurements of the response of the 3-D

bends is described in section 4. In section 5, the experi-

mental data of Lippert [8] are compared to 2-D numerical

and theoretical data and finally, 3-D experimental data are

presented.

2. Theory

2.1. Definitions

2.1.1. Cut-off frequency

For pipes with circular cross-sections, the cut-off fre-

quency below which only plane waves propagate is

(1)

where m/s is the speed of sound for dry

air at room temperature K and is the pipe

diameter. The coefficient is the smallest

non-zero eigenvalue (zero of the ordinary Bessel function

of the first kind) which corresponds to the first evanescent

mode in a pipe with circular cross-sections [19]. In our

case, the 3-D bends have a pipe diameter of 0.03 m, so that

the cut-off frequency is kHz.

For pipes with square cross-sections , the cut-off

frequency is simply .
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2.1.2. Scattering matrix

Below the cut-off frequency ( ), the response of

a bend to an acoustical perturbation can be expressed in

terms of the scattering matrix [14]:

(2)

where and are the amplitudes of the upstream and

downstream incoming waves, respectively. The scattered

waves have the amplitudes and . The pressure wave

reflection coefficient and the transmission coefficient

correspond to the reflection and transmission of

when the downstream pipe segment is anechoic so that

. They are called the upstream anechoic reflection

and transmission coefficients. The coefficients and

have a similar physical interpretation and are called the

downstream anechoic reflection and transmission coeffi-

cients.

In the absence of a main flow ( ), the scattering

matrix (equation 2) is symmetric:

(3)

(4)

where and are the phases of the reflection and

the transmission coefficients, respectively. The reference

planes for determining the origin of the phases are the

planes for and for , respectively,

as shown in Figure 1.

Furthermore, if visco-thermal losses are neglected, the

energy conservation law yields:

(5)

In this case (when ), only two equations are needed

to determine the coefficients of the scattering matrix.

2.2. Miles’ theory

Miles [7] proposed a modal expansion method to predict

the acoustical behavior of a bend in a pipe with square

cross-section . The acoustical pressure in the straight

upstream ( ) and downstream ( ) pipes can, for

harmonic waves of frequency , be expressed as

the sum of contributions of straight pipe modes:

(6)

(7)

where is the height of the pipes, is the Kronecker

tensor, represent the wave numbers for each mode
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Figure 2. Bend A (2D-bend with a sharp inner edge and a sharp

outer corner): Amplitude of the pressure wave reflection and

transmission coefficients as a function of the dimensionless fre-

quency . Comparison between the experimental data of Lip-

pert [8] ( , ) and the analytical solutions based on a mode ex-

pansion truncated after 1 mode ( ) and after 10 modes

( ).
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Figure 3. Bend A (2D-bend with a sharp inner edge and a sharp

outer corner): Phase of the pressure wave reflection and trans-

mission coefficients as a function of the dimensionless frequency

. Comparison between the experimental data of Lippert [8]

( , ) and the analytical solutions based on a mode expansion

truncated after 1 mode ( ) and after 10 modes ( ).

( ). We use here a -

convention. By writing the mode expansion of the square

cavity formed by the junction of the two straight pipes and

by equalizing the acoustical pressure at each junction, the

coefficients of the scattering matrix can be found [20]. Lip-

pert [8] compared his experimental data to the results of a

mode expansion truncated after the first mode. The mode

expansion was calculated with a larger number of modes

and a convergence of the results was found within

above ten modes. These results are compared to the exper-

imental results of Lippert [8] in Figures 2 and 3. These fig-

ures show that increasing the number of modes improves

the correlation with experimental data.

1027



ACTA ACUSTICA UNITED WITH ACUSTICA Dequand et al.: Acoustics of 90 degree sharp bends, Part I

Vol. 89 (2003)

2.3. From 2-D bends to 3-D bends

Nederveen [13] calculated the inertance of a 3D-bend by

decomposing the cross-section of the bend into parallel

2D-bends.

This decomposition of a 3D-bend into parallel thin lay-

ers is applied in our study to determine the magnitude of

the reflection and transmission coefficients of a 3D-bend

from the coefficients of 2D-bends. The cross-section of

the 3D-bend is cut into parallel thin rectangular layers

such that the total surface of these rectangles is equal to

the cross-sectional area of the 3D-bend. For each thin

layer (2D-bend), the cut-off frequency is calculated

and the amplitude of the reflection and transmission co-

efficients can be deduced from the 2-D results as a func-

tion of the dimensionless frequency . By using an

electro-acoustic analogy, a 2D-bend can be represented by

an equivalent electric network. Assuming that there is no

lateral flow between these bends, the system of parallel

thin layers is then equivalent to a global electric network

consisting of of these electric networks connected in

parallel. A simple relationship between the different ele-

ments of the system can be written and corresponds to the

continuity of pressure and velocity:

i

i

(8)

where is the circular cross-sectional area of the 3D-

bend, is the cross-section area of each thin layer ,

and are the incoming and the outgoing velocity of

the 3D-bend, and are the incoming and outgoing

velocity of a thin layer , and are the pressures in

the upstream and downstream pipe segments of the 3D-

bend, and are the pressures in the upstream and

downstream pipe segments of a thin layer .

Figures 4 and 5 show the amplitude and the phase of the

reflection and transmission coefficients as a function of the

dimensionless frequency for bends with a sharp outer

edge (Figure 4) and with a rounded outer corner (Figure 5).

The results obtained by means of the decomposition in 2D

parallel bends are compared to the 2D theoretical results

obtained using the numerical method as described in sec-

tion 3. For a bend with a sharp outer corner (Figure 4), the

amplitude predicted by the analytical model only differs

slightly from the amplitude predicted numerically for the

2-D bends. The predicted phase of the 3-D coefficients is

larger than the 2-D theoretical value. At high frequencies

( ), a problem of numerical instabilities oc-

curs and the analytical model could not easily be used to

predict the amplitude and the phase of the reflection and

transmission coefficients. This problem does not occur in

the case of a bend with a rounded outer corner (Figure 5).

At low frequencies ( ), the amplitude of the re-

flection and transmission coefficients calculated by means
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Figure 4. Bend with a sharp outer corner. Amplitude and phase

of the pressure wave reflection and transmission coefficients

and in terms of the dimensionless frequency . Compari-

son between the analytical data obtained by means of the decom-

position into 2D-bends ( ) and 2D numerical simulations

(the numerical method is described in section 3) ( , ).

of this intuitive approach is equal to the amplitude of the

reflection and transmission coefficients of a 2D-bend pre-

dicted by numerical computations (Figure 4). At higher

frequencies, the predicted 3-D reflection coefficient be-

comes larger than its 2-D value.

3. Numerical method

3.1. Approach

Numerical simulations were performed using the numeri-

cal method based on the two-dimensional non-linear Eu-

ler equations for inviscid and compressible flows [21]. The

spatial discretization method was based on a second-order

cell-centered finite-volume method. For the time integra-

tion, a second-order four-stage (low storage) Runge-Kutta

method was used.

The Euler equations accurately represent the propaga-

tion of acoustic waves. Elementary tests of the code are

provided by Hulshoff [21] and Dequand [22].

The far-field acoustic response of the bends can be ex-

tracted from the 2-D flow simulation using two differ-
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Figure 5. Bend with a rounded outer corner. Amplitude and phase

of the pressure wave reflection and transmission coefficients

and in terms of the dimensionless frequency . Compari-

son between the analytical data obtained by means of the decom-

position into 2D-bends ( ) and the 2D numerical simula-

tions (the numerical method is described in section 3) ( , ).

ent approaches: a 1-D extraction procedure or an integral

method. Comparison of the results obtained by means of

these two different extraction methods provides some in-

sight into the accuracy of the numerical results. The energy

conservation (equation 5) is used as an additional test.

3.2. Post-processing

3.2.1. 1-D extraction

Figure 6 shows a sketch of the numerical domain used for

the computations of the acoustic response of the bend with

a sharp outer corner (Bend A, Figure 1).

The numerical domain consists of two-dimensional

blocks in which the Euler equations are solved and one-

dimensional blocks within which information from the 2-

D domain is transferred.

The Euler equations can be written in an integral con-

servation form:

(9)

C D

B

E

A

F

1D

1D

1D

1D

2D

Figure 6. Scheme of the numerical domain used for the 2-D Eu-

ler computations. 2-D blocks are connected to 1-D blocks for

the extraction procedure and numerical ‘probes’ ( ) are placed at

user-specified locations in the domain.

where is the volume and is the surface of the domain,

and is the unit vector normal and outwards to the sur-

face. represents the conservative variables:

(10)

where is the density, is the total energy per unit mass,

is the fluid velocity. In the set of equations 9,

represents the normal component of the fluxes through the

surface of the control volume and is expressed as:

(11)

where is the pressure and the internal energy is related

to the total energy by : .

The numerical domain (Figure 6) has also one-dimen-

sional blocks. Such a 1-D block is an extraction region

within which information from the 2-D domain is trans-

ferred. The extraction is conservative, which means that

the sum of fluxes in the actual pipe cross-section cor-

responds to the flux imposed on the boundary of the 1-

D region. The extraction procedure is also passive, which

means that information is only transferred in one direction

from 2-D regions to 1-D regions. Therefore, the solution

of the 2-D domain is unaffected by the procedure.

The time variation of the pressure and the veloc-

ity perturbation signals are recorded at user-specified

points which are called numerical ‘probes’. The transient

signal before the sinusoidal behavior sets in was typically

four periods. The magnitude and the phase of the waves

are determined by means of a Fast Fourier Transform of

the temporal signals (over ten periods). The positive and

negative waves and are then deduced from and

using D’Alembert’s solution for 1-D wave propaga-
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Figure 7. Amplitude of the reflection coefficient of the 2-D

(inner wall , outer wall ) and 1-D ( ) as a

function of the probe positions divided by the pipe diameter

(Bend B (sharp inner edge and rounded outer wall), ,

).

tion. In the absence of a main flow, the scattering ma-

trix is symmetric (equation 3 and 4, section 2.1.2) and

only two coefficients and have to be determined.

A right-travelling acoustic velocity wave (with an ampli-

tude ) is applied at the inlet and an anechoic

condition is applied at the outlet of the numerical domain.

The coefficients and are then determined from the

results of a single numerical calculation.

Figure 7 shows the magnitude of the reflection coeffi-

cient as a function of the probe positions in the 2-D

and 1-D regions. The origin of the coordinates ( )

is chosen at the inner edge of the bend. Figure 7 shows

that the far-field identification has to be done at least three

pipe diameters upstream of the bend. In the region closer

to the bend, the acoustical field is two-dimensional. This

is deduced from the significant difference of the results

observed for the probes placed along the inner bend wall

compared to the results obtained for the probes placed at

the outer wall. In the absence of a main flow, the presence

of 1D blocks is not necessary for the identification of the

far-field acoustic response of the bends. Figure 7 shows in-

deed that, sufficiently far from the bend, the acoustic field

becomes one-dimensional. The 1-D extraction procedure

by means of additional 1D blocks will be however useful

for the determination of the aeroacoustic response of the

bends in the presence of a main flow (part II [1]).

3.2.2. Integral method

As a test for the accuracy of the wave propagation calcu-

lations and the numerical 1-D extraction method, the coef-

ficients of reflection and transmission are now de-

duced from the numerical calculations by using an integral

method [23].

Lighthill’s equation is an exact result derived from

the mass and momentum conservation laws (the Navier-

Stokes equations):

(12)

is the Lighthill stress tensor defined by:

(13)

where is the Kronecker symbol, is the viscous stress

tensor which is neglected further. The prime quantities

and represent the deviations of the pressure and the den-

sity from the quiescent reference state at the ob-

server’s position:

(14)

(15)

The speed of sound is also chosen to be that of the fluid

at the reference state .

By assuming that the source region is compact (

where is the wavelength) and using a one-dimen-

sional Green’s function for an infinite tube [24], the ex-

pression of the pressure in the pipe segment 1 is obtained:

(16)

where the brackets indicate that the value is taken at the re-

tarded time (with and the posi-

tion of the observer and the source, respectively). More de-

tails about the derivation of the equation 16 is given below

in the intermezzo. The surface surrounding the control

volume used is shown in Figure 8. As there is no main

flow, the method is in a linear approximation equivalent to

a Kirchoff integral method.

This extraction method can be implemented as a post-

processing of the numerical computations. One requires

only the recording of the time history of the pressure ,

the density , the velocity components and

at the surface surrounding the region source. This surface

consists of the surfaces , , and shown in Fig-

ure 8.

Intermezzo

Lighthill’s equation (equation 12) is derived from the mass

and momentum conservation laws.

Using Green’s function formalism, Lighthill’s analogy

can be written in an integral form. The Green function is

defined as the response , measured at a posi-

tion and time , to a pulse sent from a source position

and time :

(17)

where is the Dirac function.
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Figure 8. Volume at which the integral method is applied for

the determination of (a), and (b).

After some manipulations [25, 23], one obtains:

(18)

The general equation (18) is applied to a control volume

containing the entire domain in which we are interested.

The volume is bounded by a surface with outwards

normal (Figure 8). The choice of depends on the ob-

server position at which we want to determine the acous-

tical field. We chose the volume as a half infinite pipe

including the observer and bounded by the bend (Fig-

ure 8).

We have the freedom to choose the Green function that

we wish. We chose the low frequency approximation of the

Green function for an infinite pipe (1-D Green’s function

[24]):

(19)

where is the Heaviside function and is the retarded

time defined as:

(20)

By using the symmetry property ( ) of the

Green function , the general equation 18 can be written

in the direction 1 (Figure 8):

(21)

In the far-field approximation ( ), only plane

waves propagate and we can write:

(22)

By assuming that the source region is compact, equa-

tion 16 is deduced. The same method can be applied to

the direction 2 to determine .

3.3. Grid dependence of numerical computations

The grid-dependence of the numerical results has been

studied by comparing the results obtained for three differ-

ent grid refinements. In the interior of the numerical do-

main, the spatial discretization method is based on a cell-

centered finite-volume method which is second-order ac-

curate. The predicted coefficients of the scattering matrix

appear to behave as:

(23)

where represents either the calculated values

of the amplitude or the phase of the reflection or trans-

mission coefficients. is the extrapolated value or

converged value. is the cell width.

This corresponds to a first-convergence which might be

due either to post-processing or a problem in the use of

a first-order spatial discretization of the boundary condi-

tions.

Computations were performed on three different grids.

The fine grid had twice the refinement of the intermediate
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Figure 9. Bend A (2D-bend with a sharp inner edge and a sharp

outer corner): Verification of the energy conservation (equa-

tion 5) as a function of the dimensionless frequency . Com-

parison between the analytical solution (mode expansion trun-

cated after 10 modes) ( ); the experimental data of Lip-

pert [8] ( ); 2-D Euler computations on a fine grid with 1-D

extraction ( ) and with the integral method ( ); the extrapolated

or converged values deduced from equation 23 using a 1-D ex-

traction (o).

grid in both and -directions. In the region marked out

by the polygon (Figure 6), the intermediate

grid had 48 cells both in (segment ) and -directions

(segment ). The number of cells was progressively de-

creased by a factor of two in the -direction for upstream

blocks and in the -direction for downstream blocks.

The extrapolated values of the amplitude of the reflec-

tion and transmission coefficients have been deduced from

numerical computations and the energy conservation law

(equation 5) has been verified. Figures 9 and 10 show the

results obtained for the bend with a sharp outer edge (bend

A) and with a rounded outer corner (bend B), respectively.

For the 2-D Euler calculations on the fine grid, the en-

ergy conservation is verified within . The extraction by

means of the integral method (Figure 9) provides here bet-

ter results at high frequencies ( ). This is ex-

pected to be due to the more accurate description of the

wave propagation in the integral method. Equation 5 is

only verified within by the experimental data of Lip-

pert [8]. This indicates that the discrepancies between ex-

perimental and theoretical data (observed in Figures 2 and

3) are mainly due to experimental errors. In the next sec-

tions, only the numerical results obtained with the fine grid

will be presented, as the numerical accuracy obtained is

comparable to that of the experimental results presented in

section 5.3.

4. Experimental study

In addition to the use of Lippert’s data [8] for bends in

pipes with square cross-section, we compared our numer-

ical calculations with our own measurements for bends

in pipes with circular cross-section. This section provides

some information about the experimental procedure.
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Figure 10. Bend B (2D-bend with a sharp inner edge and a

rounded outer corner): Verification of the energy conservation

(equation 5) as a function of the dimensionless frequency .

Comparison between the experimental data of Lippert [8] ( ; 2-

D Euler computations with 1-D extraction ( ); the extrapolated

or converged values deduced from equation 23 ( ).

4.1. Bends

The bends were made in massive brass blocks with an ac-

curacy of the order of m (wall roughness). The steel

pipe diameter was m and the pipe thickness was

mm. The wall roughness of the straight pipe segments

was of the order of m.

4.2. Two-source method

The measurements of the scattering matrix coefficients

(equation 2) by means of a two-source method were

performed at the LAUM (Laboratoire d’Acoustique de

l’Université du Maine). The method is described in detail

by Ajello [15] and Durrieu [16].

Figure 11 shows a scheme of the experimental setup.

Two sets of four microphones are placed at (

) upstream of the bend and at ( )

downstream of the bend, respectively. The choice of four

microphones at each side of the bend enables us to get

accurate measurements in a broad range of frequencies

( ). The presence of anechoic termi-

nations upstream and downstream of the bend suppresses

the standing wave pattern and reduces the sensitivity of the

measurements to errors. Two loudspeakers used as sources

are placed respectively upstream and downstream of the

bend. Using loudspeakers enables us to use an automatic

source control. The sources are driven by a swept sine by

means of the HP3565 analyzer. The air temperature is de-

termined from acoustical measurements and is assumed to

be constant during one sweep.

For a harmonic wave at the frequency , the acoustical

pressure and velocity in the pipe segments

at each side ( ) of the bend are given by:

(24)

(25)
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Figure 11. Scheme of experimental

setup used for the two-source method

measurements (LAUM – Labora-

toire d’Acoustique de l’Université du

Maine, Fr). The position of the mi-

crophones is m,

m,

m upstream of the bend, and

m,

m, m down-

stream of the bend. For the bend with

a sharp inner edge and a sharp outer

corner m and

m. For the bend with a sharp

inner edge and a rounded outer cor-

ner m and

m.

with the wave number:

(26)

for and .

In the absence of a main flow ( ), the damping co-

efficient due to visco-thermal dissipation in the bound-

ary layers at the pipe wall is approximated by Kirchhoff’s

formula [26]:

(27)

where is the ratio of specific heats, is

the Prandtl number and is the thickness of

the acoustic boundary layer. The kinematic viscosity of air

is m /s at a room temperature of K

and at atmospheric pressure.

In the presence of a main flow as considered in part II

[1], we used a fit of Hofmans [27] of the damping coeffi-

cient measured by Ronneberger [28] and Peters [29].

The pressure reflection coefficient is de-

duced from measurement of the transfer function

using the two-microphones method. The

transmission coefficient can be deduced

from the value of the reflection coefficients and .

In the absence of a main flow, only one measurement se-

ries is needed to determine the coefficients of the scatter-

ing matrix . The two independent acoustic states used in

the determination of the coefficients of the scattering ma-

trix (equation 2) are obtained using either the upstream or

the downstream sound source. These two sets of measure-

ments provide an independent check of the experimental

accuracy by comparison of and with and

, respectively.

The two-source method is very convenient because it

enables to measure the acoustic response of discontinuities

in a broad range of frequencies. Most of the experimen-

tal results presented were performed at frequencies in the

range Hz kHz. Typical accuracy of the data is

for both and . Some data up to frequencies

of kHz will be presented. These data are, however, less

accurate than low frequency data ( Hz kHz).

5. Results

5.1. Test case: 2-D bend with a sharp inner edge and

a sharp outer corner

The acoustical response of a bend with a sharp inner edge

and a sharp outer corner has been measured for pipes with

square cross-sections by Lippert [8] for frequencies up

to the cut-off frequency . His experimental data have

been compared in Figure 2 with the results of an analytical

model based on a mode expansion as proposed by Miles

[7]. The results are also compared to the results of numer-

ical computations based on the 2-D Euler equations.

Lippert’s data [8] for the reflection and transmission co-

efficients and

as a function of the dimensionless frequency are

shown in the Figures 12 and 13. The reference planes for

determining the origin of the phases are the planes

for and for , respectively, as shown in Fig-

ure 1.

The experimental results are compared to the results of

the mode expansion truncated after ten modes and the re-

sults of numerical computations discussed in section 3.

As explained in section 1, the numerical data are ob-

tained in two different ways: by means of the 1-D extrac-

tion procedure and the integral method.

The two different extraction procedures (1-D extraction

and integral method) give similar results except at frequen-

cies near the cut-off frequency at which the phase differs

slightly from the theoretical data. The theory predicts quite

accurately the experimental data of Lippert [8].
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Figure 12. Bend A (2D-bend with a sharp inner edge and a sharp

inner corner): Amplitude of the reflection and transmission coef-

ficients as a function of the dimensionless frequency . Com-

parison between the analytical solution (mode expansion trun-

cated after 10 modes): ; the experimental data of Lippert

[8]: , ; 2-D Euler computations with 1-D extraction ( , o) and

with the integral method ( , ).
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Figure 13. Bend A (2D-bend with a sharp inner edge and a sharp

inner corner): Phase of the reflection and transmission coeffi-

cients as a function of the dimensionless frequency . Com-

parison between the analytical solution (mode expansion trun-

cated after 10 modes): ; the experimental data of Lippert

[8]: , ; 2-D Euler computations with 1-D extraction ( , o) and

with the integral method ( , ).

5.2. 2-D bend with a sharp inner edge and a

rounded outer corner

The case of a 2-D bend with a sharp inner edge and

a rounded outer corner (bend B, Figure 1) has also been

studied by Lippert [8]. He used the bend with a sharp inner

edge and a sharp outer corner (bend A, Figure 1) to which

he added a sheet of brass with a radius equal to the height

of the duct. The space left between the sheet and the outer

corner of the bend was filled with sand.

In Figures 14 and 15, the experimental data of Lippert

[8] are compared with results of 2-D Euler computations.

The agreement is fair. The behavior is quite different from

that of the bend with a sharp outer corner (bend A, Fig-
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Figure 14. Bend B (2D-bend with a sharp inner edge and a

rounded outer corner): Amplitude of the reflection and transmis-

sion coefficients in terms of the dimensionless frequency .

Comparison between experimental data (Lippert [8]): , ; and

Euler computation data: , o. For reference, the magnitude of the

coefficients obtained for the bend A (sharp outer corner) is also

plotted: .

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Dimensionless frequency f/f
c

P
h
a
s
e

o
f
R

p
a
n
d

T
p

!
T

/ "

!
R

/ "

Bend B

Figure 15. Bend B (2D-bend with a sharp inner edge and a

rounded outer corner): Phase of the reflection and transmission

coefficients in terms of the dimensionless frequency . Com-

parison between experimental data (Lippert [8]): , ; and Eu-

ler computation data: , o. For reference, the phase of the coeffi-

cients obtained for the bend A (sharp outer corner) is also plotted:

.

ure 1). The amplitude of the transmission coefficient

remains greater than 0.9 (up to ), while the am-

plitude of the reflection coefficient remains lower than

0.35. The measured amplitude of the transmission coeffi-

cient is lower than the prediction of the 2-D Euler compu-

tations. Verification of the energy conservation shown in

Figure 10, indicates a problem with the experimental data.

5.3. Comparison between 2-D and 3-D data

The acoustic response of the bends with a sharp inner edge

and either a sharp or rounded outer corner in pipes with

circular cross-section (bends C and D, Figure 1) has been

measured. For these configurations, the flow is not planar.
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The experimental method used is the two-source method

described in section 2.

Figures 16 and 17 present the comparison between the

2-D analytical and 3-D experimental data obtained for

bends with a sharp inner edge and a sharp outer corner

(bends A and C, Figure 1), and for bends with a sharp in-

ner edge and a rounded outer corner (bends B and D, Fig-

ure 1). The comparison is made for frequencies up to 1

kHz, this corresponds to dimensionless frequencies

up to 0.15. In Figure 16, only the 2-D analytical solution

is shown because 2-D experimental data of Lippert [8] are

not available for such low frequencies. In Figure 17, a fit

of the numerical data presented in Figure 14 and 15 was

used. In first approximation, for bends with a sharp inner

edge and a sharp outer corner (bends A and C), we see

that 2-D and 3-D data correspond to each other for equal

dimensionless frequencies .

Note that the excellent agreement between the mea-

sured values of and , obtained from two inde-

pendent measurement series (one with each source), in-

dicates a typical accuracy of . The small deviation

of at the frequency between theory

and experiment is therefore considered to be significant.

This is expected to be due to visco-thermal losses at the

bend. The damping coefficient calculated by means of

Kirchhoff’s formula [29] (equation 27) for a straight pipe

varies, for the frequency range considered, in the range

. Hence, the observed dis-

sipation in the bend is of the order of magnitude of the

visco-thermal damping for a tube length of one diameter.

In the case of the bend with a sharp inner edge and a sharp

outer corner (bend A, Figure 1), the bend center line has a

length of one diameter . The dissipation is about a fac-

tor of three higher than . This is expected to be due

to the strong viscous dissipation around the inner edge of

the bend at which the acoustical flow is singular (Morse &

Ingard [30]).

The results obtained by means of Nederveen’s theory

[13] (section 2.3) do not give a better prediction of the co-

efficients of the scattering matrix in our case. Figure 17

shows that for , the behavior of the 3D-bend

with a rounded outer corner (bend D, Figure 1) does not at

all agree with the behavior of the 2D-bend (bend B, Fig-

ure 1) nor the predictions of Nederveen’s theory [13].

An additional series of measurements was performed

on the bend with a sharp inner edge and a rounded outer

corner (bend D, Figure 1) at higher frequencies (up to

). The results are presented in Figure 18. As-

suming that 2-D and 3-D data correspond to each other

for equal dimensionless frequencies , appears not to

be a good approximation in the case of such a bend with a

sharp inner edge and a rounded outer corner. Our measure-

ments on the bend D (Figure 1) with circular pipe cross-

sections deviate indeed from the 2-D experimental data of

Lippert [8] and the 2-D numerical simulations. The intu-

itive approach of Nederveen [13] to deduce 3-D data from

2-D data also fails in that case (section 5.2, Figure 15). It

appears that, in the range of frequencies considered, the
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Figure 16. Bends A and C (sharp inner edge and sharp outer cor-

ner): Comparison of 2-D theory ( ) and 3-D experimental

data ( , and , ) for equal dimen-

sionless frequencies and without main flow ( ). The

results of the decomposition of the bend in parallel thin layers (as

proposed by Nederveen [13] are also shown (.....).

acoustical response of bends with a sharp inner edge in

pipes with circular cross-sections is almost independent of
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Figure 17. Bends B and D (sharp inner edge and rounded outer

corner): Comparison of 2-D data ( ) and 3-D experi-

mental data ( , and , ) for equal

dimensionless frequencies and without main flow ( ).

The 2-D data are obtained by using a fit of the numerical data

showed at Figure 14 and 15. The results of the decomposition of

the bend in parallel thin layers (as proposed by Nederveen [13]

are also shown (.....).

the shape of the outer corner. This is a rather unexpected

result for which we do not have any explanation.
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Figure 18. Bends B and D (sharp inner edge and rounded outer

corner) without main flow ( ): Comparison of 2-D numer-

ical data ( , o) with 2-D experimental data ( , ) of Lippert [8]

and a fit of 3-D experimental data obtained by means of the two-

source method ( ) with errorbars). The results are shown

in terms of the dimensionless frequency . The 2-D modal

theory for the sharp bend with a sharp outer corner is also shown

( ).

6. Conclusions

The results of analytical techniques and a numerical me-

thod for the 2-D Euler equations have been compared with

experimental data for the acoustical response of bends

with a sharp inner edge. The quality of acoustical predic-

tions by means of such numerical computations has been

verified. Furthermore, a dramatic effect of the shape of the

bend on the difference between the response of bends in

pipes with square cross-sections compared to that in pipes

with circular cross-sections has been observed.

In the case of a bend with a sharp inner edge and

a sharp outer corner, the 2-D numerical simulations accu-

rately predict the available 2-D experimental data from the

literature [8] and the analytical prediction based on a mode

expansion [7]. The 2-D analytical and numerical predic-

tions also agree with experimental data for pipes with cir-

cular cross-sections measured by means of a two-source

method for equal ratio of the frequency and the

cut-off frequency .

The acoustical response of a sharp bend with a

rounded outer corner has also been studied. Numerical

simulations based on the 2-D Euler equations accurately

predict the 2-D experimental data from the literature [8].

For equal dimensionless frequencies , the comparison

of 2-D numerical and experimental data with 3-D experi-

mental results obtained by means of a two-source method

shows an unexpected behavior. Measurements show that

the acoustical response of a sharp bend with a rounded

outer corner in pipes with circular cross-sections is close

to that of a bend with a sharp inner edge and a sharp outer

corner. The acoustical response of the bend in pipes with

circular cross-section seems independent of the shape of

the outer corner. This is quite different from the behav-

ior of the bends in pipes with square cross-sections. An

attempt to deduce the reflection and transmission coeffi-
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cients in a 3D-bend from the measured coefficients in a

2D-bend has be done by decomposing the circular cross-

section of the 3D-bend into parallel thin independent rect-

angular layers as proposed by Nederveen [13]. At low fre-

quencies, the calculated coefficients are similar to the mea-

sured coefficients for a 2D-bend. This method does how-

ever not explain the unexpected behavior of the 3-D bend

with a rounded outer corner found in the present measure-

ments.
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Université du Maine, Le Mans, 1997.

[16] P. Durrieu, G. Hofmans, G. Ajello, R. Boot, Y. Aurégan,

A. Hirschberg, M. Peters: Quasi-Steady Aero-Acoustic Re-

sponse of Orifices. J. Acoust. Soc. Am. 110 (2001) 1859–

1872.

[17] J. W. M. Gijrath, B. T. Verhaar, J. C. Bruggeman: Prediction

Model for Broadband Noise in Bends. Proceedings of the

7th international conference on Flow-Induced Vibration-

FIV2000, Lucerne, Switzerland, 19-22 June 2000.
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