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Summary

The aeroacoustical response of 90 degree sharp bends is defined as the response to acoustical perturbations in the

presence of a main flow. The acoustical response of bends, in the absence of a main flow, has been considered

in part I [1]. Experiments are carried out for bends in pipes with circular cross-sections. These 3D-bends have a

sharp inner edge and have either a sharp outer corner or a rounded outer wall. The three-dimensional experimental

results are compared with results of numerical simulations, based on the Euler equations for two-dimensional

inviscid and compressible flows, and with analytical data obtained by means of two-dimensional quasi-steady

flow theories. As observed in the absence of a main flow (part I [1]), the two-dimensional numerical simulations

provide a good prediction of the aeroacoustical response of bends with a sharp inner edge and a sharp outer

corner. For bends with a rounded outer corner, the prediction is less satisfactory. The two-dimensional quasi-

steady flow approximation predicts reasonably well the response of bends up to Strouhal numbers of the order of

unity. However, quasi-steady flow theories do not predict the irregularities of the response as a function of the flow

velocity. These irregularities are expected to be a Strouhal number effect and are observed both in experiments

and numerical simulations.

PACS no. 43.20.Mv, 43.20.Ra, 43.20,Fn

1. Introduction

The acoustical response of
���

sharp bends has been pre-

sented in part I [1]. We assumed that 2-D and 3-D data

correspond to each other for equal dimensionless frequen-

cies ����. The very good agreement observed between

experimental, theoretical and numerical data confirms the

validity of such an approximation, in the case of a
���

bend with a sharp inner edge and a sharp outer corner.

For pipes with circular cross-sections, a surprising re-

sult was obtained: experimental data for 3D-bends with

a rounded outer corner agreed better with 2-D theory for

bends with a sharp outer corner than with 2-D theory for

bends with a rounded outer corner. For a stagnant uniform

fluid (�	
�), the shape of the outer corner does not seem

to have much impact on the acoustical response of the 3-D

bend.

The present paper deals with the response of single (iso-

lated)
���

sharp bends to an acoustical perturbation in the

presence of a main flow of velocity�	. A sharp bend in a

pipe has mostly a damping effect for the acoustic field. The

flow separation at the bend also affects the aeroacoustic
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behavior of pipe discontinuities placed downstream of the

bend. Examples of such interactions are provided by Zi-

ada [2], [3] for self-sustained oscillations of a closed-side

branch system and by Nygård [4] for broad-band noise

production by two successive bends. Such effects are not

considered here.

The aeroacoustical response of the bends is described

in terms of the coefficients of a scattering matrix. The fre-

quency dependence of these coefficients will be given for

fixed Mach numbers�	
�	��	where�	and �	repre-

sent the main flow velocity and the speed of sound, respec-

tively, in the pipe segment 1 upstream of the bend (Fig-

ure 1 in part I [1]). Three-dimensional experimental data

obtained from measurements at the LAUM by means of

the two-source method (part I [1]) are compared with nu-

merical predictions based on the two-dimensional non lin-

ear Euler equations. 2-D and 3-D data are assumed to cor-

respond to each other for equal dimensionless frequency

����(as assumed in part I [1]) and for equal Mach num-

ber �	. Additional experimental data at fixed frequency

����
����are obtained from measurements at TU/e

by means of the two-load method. This experimental pro-

cedure is described in section 3. The dependence on Mach

number �	(with
���	���) of the reflection and

transmission coefficients for the total enthalpy, �
��and���, respectively, is obtained. Three-dimensional experi-

c
�
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mental data are compared to results of two-dimensional

numerical predictions and quasi-steady flow theories. Note

that such a quasi-steady flow approximation appears to be

only reasonable for bends with a sharp inner edge. For

bends with a rounded inner edge, the deviation of the re-

sults obtained by means of the quasi-steady flow theory

and the experimental data is larger than the deviation be-

tween experimental data for a pipe with a bend and the

same length pipe without bend (Dequand [5]).

In section 2, the scattering matrix is defined, the quasi-

steady flow theories are briefly explained and the numer-

ical method and its limitations are presented. The exper-

imental procedure is described in section 3. In section 4,

numerical predictions are compared to experimental and

theoretical data for the 3D-bends with a sharp inner edge

and either a sharp or a rounded outer corner (Bends C and

D, Figure 1 in part I [1]).

2. Theory

2.1. Scattering matrix

As in the acoustical study (part I [1]), the flow behavior

at the bends is described by a scattering matrix ��. This

representation is valid because the frequencies �consid-

ered here are low compared to the cut-off frequency ��, so

that only plane waves propagate. In the presence of a main

flow, it is more appropriate to introduce the aero-acoustical

variable ��� defined as

��� ����	�
����� (1)

where �����denotes the pipe segment direction (Fig-

ure 1, part I [1]). This variable corresponds to the total

enthalpy fluctuations1 when the entropy fluctuations are

neglected. The scattering matrix ��relates the different

total enthalpy fluctuations:������������������������ �� ���
�������� (2)

When the pipe segment 2 has an anechoic termination

(��� �!
), the upstream reflection and transmission co-

efficients for the total enthalpy are:

������"��#��$��� (3)������"	�	���$��$��� (4)

where the pressure reflection and transmission coefficients��"and
��" were introduced in part I [1].

1 Please, note that when the entropy fluctuations are neglected, the total

enthalpy may also be called total exergy. However, we use here the term

of total enthalpy as used by most authors in the literature (Doak [6], Howe

[7]).

When the pipe segment 1 has an anechoic termination

(
����!

), the downstream reflection and transmission co-

efficients for the total enthalpy are:

������"��$��#��� (5)������"	�	���#��#�� (6)

2.2. Quasi-steady flow theories

At low Strouhal numbers %&��'()�*�
based on

the pipe diameter
'

, we can predict the scattering matrix��by means of quasi-steady flow models as developed

by Ronneberger [8] for the pipe expansion and used by

Hofmans [9] and Durrieu [10] for the orifice. From their

studies, it appears that the aeroacoustical behavior of a di-

aphragm is already well determined by the jet flow and that

the structure of the turbulent mixing region downstream of

the jet is not crucial for %&+�
. For low Mach numbers�,! �, it is therefore assumed that an incompress-

ible quasi-steady flow model can be used locally at the

bend. For higher Mach numbers, the local flow behavior

at the bend is described by a compressible quasi-steady

flow model.

The flow is assumed to have a uniform velocity )�up-

stream of the bend. When it reaches the sharp inner edge of

the -!.bend, the flow separates and forms a confined jet.

The jet reaches a minimum cross-section at which it has a

uniform velocity )/and a cross-section %/smaller than the

pipe cross-section %". This is the so-called vena-contracta

effect (as observed in the case of a diaphragm [9]). The

factor 0/�%/(%"is called the vena-contracta ratio. Fol-

lowing a turbulent mixing region, the flow becomes again

uniform (Figure 1) with a velocity )�.
2.2.1. Incompressible flow model

In the incompressible flow model, four equations apply:

– the mass conservation equations:%")��%/)/� (7)%/)/�%")�� (8)

– the Bernoulli equation:��$��	1)����/$��	1)�/� (9)

– and the momentum conservation law applied to the tur-

bulent mixing region:%"�/$%/	1)�/�%"2��$	1)��3 (10)

Different assumptions are made:4 only plane waves propagate far away from the discon-

tinuity,4 the source region is compact (small Helmholtz number%"5�1�%"6�(7�1*�
),4

a flow separation occurs at the bend and a jet is formed,4 the flow in the jet is incompressible and irrotational,
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Figure 1. Quasi-steady behavior of the flow in a sharp bend.

� wall friction and heat transfer are neglected in the tur-

bulent mixing region downstream of the jet and at the

walls.

Using this incompressible flow approximation, the scat-

tering matrix
�

can be defined as:������ ���������	� 
������ ����� 	� (11)

where
���������
��takes into account the vena-

contracta effect. The incompressible flow assumption is

valid for low Mach numbers (
����
).

2.2.2. Compressible flow model

For higher Mach numbers (
����
), the effect of com-

pressibility becomes significant. The four equations of the

incompressible flow model (equations 7 to 10) are modi-

fied and complemented with the isentropic ideal gas rela-

tion (in the upstream region down to the jet) and the energy

conservation law. In this model, heat transfer and friction

at the walls are neglected. Furthermore, the gas is assumed

to have a constant ratio�������of the specific heats.���� ������ �� (12)���� ������ �� (13)
� ��� ���
!����
� ��� ���
!���� (14)��!������ �����!������ ��� (15)!�!�������	"� (16)


� ��� ���
!����
� ��� ���
!���� (17)

In order to take into account the effect of compressibil-

ity on the vena-contracta ratio, the empirical formula pro-

posed by Hofmans [9] for an orifice is used:#��#$�
���
%&��&��	� (18)

where
�� ��'�is the Mach number based on the jet

velocity. The determination of the vena-contracta ratio
#$

is briefly explained in the next section. The set of equations

12 to 18 is solved numerically, using the incompressible

flow approximation as initialization.

2.2.3. Determination of the vena-contracta ratio
#$

The vena-contracta ratio
#$can be determined either em-

pirically from the values of the loss-coefficient
�(re-

ported by Blevins [11] and Idelchik [12], or theoretically

by means of a potential flow theory as the hodograph

method described by Prandtl [13]. The loss coefficient
�(

is defined, at low Mach numbers, as the ratio of the pres-

sure difference)!�!*�!((between the pressures up-

stream and downstream of the bend) and the upstream dy-

namic pressure:�(�!*�!(��� ��� (19)�(depends on the geometry of the discontinuity and on

the Reynolds number �+�,(where
+

is the pipe diam-

eter and
,

is the kinematic viscosity). Following Blevins

[11], because the Reynolds numbers are typically of order-�
�.�, the values
�(�
��for the bend with a sharp

outer corner and
�(�
�
for the bend with a rounded

outer wall should be used. These values correspond to the

vena-contracta ratio
#$���/0and

#$���/00, respec-

tively. In the limit
�1�, the numerical predictions of

steady flow behavior obtained by means of the EIA2 code

converge towards the value
�(�
��.

The vena contracta ratio
#$of a 2-D bend with a sharp

inner edge and a sharp outer corner can also be predicted

by means of the potential flow theory (see appendix). The

value
#$���2�22was found by Huijnen [14]. This corre-

sponds to a loss coefficient
�(��������
�����0
2%.

The value
#$���/00gave a prediction of the reflec-

tion coefficient 20% higher than that predicted with the

vena-contracta ratio
#$���2�22. The theoretical vena-

contracta ratio
#$���2�22was chosen because it ap-

pears to provide a better fit of our experimental data.

2.3. Numerical method

Numerical simulations were performed with the EIA
�

code based on the 2-D Euler equations as described in part

I [1]. Acoustical information was obtained by means of the

1-D extraction procedure introduced in part I [1].

The computations were performed in two steps. A

steady flow computation was first carried out. This calcu-

lation consisted in imposing a constant uniform flow ve-

locity on the upstream boundary of the numerical domain.

The inflow velocity magnitude was gradually increased up

to the final Mach number
�� ��'�. The time integra-

tion was based on a five-stage Runge-Kutta method with a

non-time accurate integration. With this method, each cell

2 The EIA code (‘Euler code for Internal Aeracoustics’) was developed

by Hulshoff in the framework of the European project Flodac (BRPR

CT97-0394).
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Figure 2. Scheme of the experimental setup used for the two-load

method measurements (TU/e - Technical University of Eind-

hoven). The relative position of the microphones is�������������	
m,��������������m,���������������m,

�����������
���m upstream of the bend, and�������������
m downstream of the bend. For the bend with a sharp

inner edge and a sharp outer corner �����������m and

��������m. For the bend with a sharp inner edge and with

a rounded outer corner����������m and ������

	�m.

Note that the reference planes for determining the origin of the

phases was chosen at the inner edge of the bend (plane���for�����and plane ���for
�����) as shown in Figure 1.

is marched at its own stability limit using a different time

step. The time needed to get a steady-flow solution is con-

siderably reduced by using this approach compared to a

uniform time-step approach. The steady state was obtained

when the desired inlet velocity was reached. This solution

was then used as initial condition for the unsteady flow

computation. This second step is performed by impos-

ing an acoustical perturbation. A right-travelling acoustic

wave is applied at the inlet and an anechoic condition is ap-

plied at the outlet. The coefficients���and���can then be

determined. The amplitude of the right-travelling acoustic

velocity wave was varied from ��� !"#to ���#!"#.
This resulted in a variation of the order of ��� of the pre-

dicted values of the coefficients of the scattering matrix.

The coefficients ���and ���can be determined by means

of a second calculation in which an upstream-travelling

acoustic wave is applied at the outlet while an anechoic

condition is applied at the inlet. As in the computations

described in part I [1] (in the absence of a main flow), the

pressure and the velocity signals were recorded at user-

specified numerical probes and had a periodic behavior af-

ter typically four periods. The magnitude and the phase of

the positive and negative travelling pressure waves$�% and

$�% were deduced from the recorded pressure and veloc-

ity signals using a Fast Fourier Transform of the temporal

signals (over six periods).

As explained in section 2.2, the jet formation at the

sharp inner edge is followed by a turbulent mixing. Sev-

eral pipe diameters downstream of the discontinuity, plane

waves should propagate again in a uniform flow. How-

ever, due to the absence of effects of viscosity in the model

based on the 2-D Euler equations, the 1-D behavior down-

stream of the bend will never be reached (this is also a

problem for the numerical solution which includes dissi-

pative truncation errors, even if a downstream part of ten

diameters or more is used as it is needed in experiments to

get a uniform flow). This makes the numerical determina-

tion of the coefficients���and���of the scattering matrix&�difficult and less reliable. In order to overcome this

limitation, the plane-wave identification is performed at

six diameters 'downstream of the bend. A buffer region

is added in order to reduce the vorticity at the end of the

numerical domain (Figure 6 in part I [1]). This buffer re-

gion is placed two diameters downstream of the bend and

is made up of blocks with a decreasing number of cells in

the direction perpendicular to the pipe axis. This reduces

spurious generation of acoustic waves when the vortices

leave the calculation domain. For the bend with a sharp in-

ner edge and a rounded outer corner, the coefficients (���(
and (���(have been determined with an accuracy of )*.

For the bend with a sharp inner edge and a sharp outer cor-

ner, the coefficient (���(has also been determined with an

accuracy of )*. However, the uncertainty in the determi-

nation of the downstream reflection coefficient (���(was

of the same order as its own magnitude. Results for (���(
are therefore not presented.

In the bend region, the mesh used for the numerical

computations had typically 48 cells both in +and ,-
directions over a distance )'around the bend.

3. Two-load method

A two-load method was used at TU/e. The setup is de-

scribed in details by Peters [15], Hofmans [9] and Durrieu

[10] and is summarized here.

A scheme of the setup is shown in Figure 2. A high pres-

sure supply system provided dry air at a reservoir pres-

sure between 1 and 15 bar. The valve enabled us to re-

duce the pressure to the desired level. The volume flux

of the air flow was measured by means of a turbine me-

ter. From the measurement of the temperature of the tube

wall near the flow meter and near the acoustical measure-

ment section, the temperature of the air flow was deduced

by assuming an adiabatic wall recovery temperature with

turbulent boundary layer (Shapiro [16]). From the volume

flow measurement corrected for pressure and temperature

difference, the velocity "#was then deduced. The source

used was a siren (rotating valve). The amplitude of the

acoustic perturbation generated could be varied. The re-

sults shown in the next section were obtained with an am-

plitude "-#."#/01���#2. The settling chamber placed

just upstream of the siren contained damping material in

order to reduce the effect of acoustic perturbations due

to the valves. In the measurement section, the acoustic

pressure was measured at different positions by means

of piezo-electric pressure transducers (PCB type 116A).

The pressure signals were amplified by charge amplifiers

16
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Figure 3. Bend A (and C): Dimensionless frequency dependence

of the amplitude
�����and the phase �	
��of the upstream re-

flection coefficient for the total enthalpy. Comparison between

3-D experimental results ( ) obtained by means of the

two-source method and 2-D numerical simulations using EIA

() for 3 different Mach numbers �������, �������and

�������. The data predicted by the quasi-steady flow theory

at ������
( ) and the data obtained at ����������by

means of the two-load method (�) are also plotted. As a refer-

ence, the 2-D theory at ����
(���) is shown.

(Kistler type 5011). By means of the data-acquisition sys-

tem (HP3565A and PC), the transfer functions and then the

reflection and transmission coefficients were calculated.

For convenience, we restricted our measurements to a sin-

gle frequency ������ �!". This allowed the choice of

optimal microphone positions.

As in the two-source method (introduced in part I [1]),

the multiple-microphone method is used to determine the

reflection coefficient from the measured transfer functions.

For that, five microphones upstream of the discontinuity

and two microphones downstream are used. Their posi-

tions are given in Figure 2.

The two linearly independent states needed to determine

four equations for the coefficients of the scattering ma-

trix #$, were obtained by measuring with two different

acoustic loads. The first measurement was performed with

a pipe length %&�� '()'m downstream of the bend.

This corresponds roughly to half the wavelength *�+at

the frequency (��+),
Hz) used in our experiments, so

that the bend is close to a pressure node in this first mea-

surement. The second measurement series was performed

with an extra pipe length corresponding to a quarter wave-

length (%-�%&.*�!). Such a measurement procedure
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Figure 4. Bend A (and C): Dimensionless frequency dependence

of the amplitude
�3���and the phase �4
��of the upstream

transmission coefficient for the total enthalpy. Same as in Fig-

ure 3. The data obtained at ����������by means of the

two-load method were not available.

requires a rather long time and cannot be accurate when

the main flow conditions are not stable. In our setup, the

data obtained for the coefficients of the scattering matrix

#$could be reproduced within
(5

.

The frequency dependence of the aeroacoustical re-

sponse of the bends was measured at the LAUM (Univer-

sité du Maine, Fr) by means of the two-source method de-

scribed in part I [1]. In this setup, the Mach number was

restricted to 6&7� �8. The data obtained with the two-

source method are expected to be more accurate than those

obtained by means of the two-load method. The two-load

method however enables us to measure at relatively high

Mach numbers (6&7� "), which could not be reached

in the setup at the LAUM.

4. Results

4.1. Frequency dependence

4.1.1. Bends A and C:
,�9

bend with sharp inner and

outer edges

Figures 3 and 4 show the amplitude and the phase of the

upstream reflection coefficient (:;<$:and =>
�?) and of

the transmission coefficient (:@<$:and =A
�?) as a func-

tion of the dimensionless frequency ����for the 3-D bend

with a sharp inner edge and a sharp outer corner. The re-

sults are shown for three different fixed Mach numbers

6&�� �", 0.05 and 0.07. The aeroacoustical response

17
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Figure 5. Bend B (and D): Dimensionless frequency dependence

of the amplitude
�����and the phase ���	
of the upstream

reflection coefficient for the total enthalpy. Same as in Figure 3.

of the 3-D bend with circular cross-sections is well pre-

dicted by the 2-D numerical simulations. Assuming that 2-

D and 3-D data correspond to each other for equal dimen-

sionless frequency ���, we see that at the lowest Mach

number �������, the numerical calculations and the

experimental results are accurately described by the the-

ory for ����
. Only a significant effect of the main

flow in the phase ���of the reflection coefficient ���is

observed. It is also quite interesting to note a difference

between the limits �������� �
���!�"#at ����

and �������� �
���$#at �� %��

. The second limit

corresponds to the quasi-steady flow theory in which we

neglected inertial effects at the bend. The physics of this

difference could be similar to that of the difference be-

tween the low-frequency limit &'(�
at ����and the

low-frequency limit )*(�
at ��(�

discovered theo-

retically by Rienstra [17] for the end-correction at an open

pipe termination, and confirmed experimentally by Peters

[15]. As the Mach number ��increases, its influence on

the coefficients of the scattering matrix+�is observed and

is well predicted by the 2-D numerical simulations. When

the main flow velocity increases, the deviation between 2-

D and 3-D data becomes more important. In the limit of

low frequencies, the quasi-steady flow theory is quite ac-

curate.

We also observe that the agreement between the two-

source and two-load methods is excellent for the amplitude

but much less satisfactory for the phase.
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Figure 6. Bend B (and D): Dimensionless frequency dependence

of the amplitude
�.���and the phase �/�	
of the upstream

transmission coefficient for the total enthalpy. Same as in Fig-

ure 3.

4.1.2. Bends B and D: 0�1sharp bend with a rounded

outer corner

In figures 5 and 6, the amplitude and the phase of the co-

efficients of the scattering matrix are presented in terms of

the dimensionless frequency���for three different Mach

numbers ������$0, 0.0533 and 0.0667 for the bend

with a sharp inner edge and a rounded outer corner. As ob-

served in the acoustical study presented in part I [1], the

deviation between 2-D and 3-D data is much more impor-

tant for this bend than for the bend with a sharp outer cor-

ner. Also for this bend, there is a good agreement between

data obtained by means of the two-source and two-load

methods.

4.2. Dependence on Mach number

4.2.1. Bends A and C: 0�1bend with sharp inner and

outer edges

In Figures 7 and 8, the amplitudes 2��2and 23�2of re-

spectively the reflection and the transmission coefficients

for the total enthalpy are shown as a function of the Mach

number ���4��5�for a fixed dimensionless frequency

�������6�. These experimental data are obtained from

measurements by means of the two-load method (sec-

tion 2). The numerical calculations based on the two-

dimensional Euler equations predict the amplitudes of

the upstream reflection coefficient 2���2and downstream

transmission coefficient 237�2. In both experimental and

numerical results, an irregular behavior of the transmis-
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Figure 7. Bend A (and C): Dependence on Mach number of the

amplitude of the reflection coefficients �����and �����for the

total enthalpy. The dimensionless frequency is set to �����	
	��. Comparison between 3-D experimental results (for

�����, �for �����) and 2-D numerical simulations (�for �����).
The data are also compared to an incompressible quasi-steady

flow theory (. . . for �����and ..... for �����) and a quasi-steady

compressible flow theory (—– for �����and ���for �����).

sion coefficient as a function of ��is observed around

a Strouhal number ��������of 0.2 (Figure 8). The

amplitude of the upstream transmission coefficient �����is
well predicted for low Mach numbers (���� !"). For

higher Mach numbers, the upstream transmission coeffi-

cient �����deviates from the experimental data. This could

be due to the difficulties encountered for the plane-wave

identification downstream of the discontinuity. These data

could only be determined within an accuracy of #$. The

downstream reflection coefficient �%&��is not shown in

Figure 7 because the data obtained were not reliable. An

alternative extraction method based on an integral method

might provide better results (part I [1]). This should be a

subject of further research.

Figures 7 and 8 show also the prediction of the quasi-

steady incompressible and compressible flow theories for

a vena-contracta factor '( �� "#"". Up to Strouhal

numbers of the order of unity (that is for Mach numbers

��)� �*), the amplitude of the scattering matrix coef-

ficients are reasonably well predicted by the quasi-steady

compressible flow theory. For Strouhal numbers of order

unity or higher, the experimental reflection coefficient ap-

proaches the limit of zero Mach number (part I [1]). It de-

viates strongly from the quasi-steady flow limit.

The irregularities mentioned above around ���� #
and corresponding to ���� !, which are observed in ex-

periments and numerical simulations as a function of ��
(Figure 8), are not predicted by a quasi-steady flow the-

ory. This is expected to be a Strouhal number dependence

like the whistling of a diffuser (van Lier [18]) or a grazing
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Figure 8. Bend A (and C): Dependence on Mach number of

the amplitude of the transmission coefficients �+���and �+���
for the total enthalpy. The dimensionless frequency is set to

�����	
	��. Comparison between 3-D experimental results

(for �+���, �for �+���) and 2-D numerical simulations (�for

�+���, , for �+���). The data are also compared to an incom-

pressible quasi-steady flow theory (. . . for �+���and ..... for �+���)
and a quasi-steady compressible flow theory (—– for �+���and

���for �+���).
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Figure 9. Bend B (and D): Dependence on Mach number of the

amplitude of the reflection coefficients �����and �����for the

total enthalpy. Same as in Figure 7.

flow along a Helmholtz resonator (Dequand [19]). Similar

particularities have also been observed around ���� #
by Nygård [4] in the broad-band noise produced by a bend

with a sharp inner edge and a sharp outer corner. Around

���� #, the broad-band noise of such a bend is -dB
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Figure 10. Bend B (and D): Dependence on Mach number of the

amplitude of the transmission coefficients �����and �����for the

total enthalpy. Same as in Figure 8.

higher than that of a bend with a rounded outer corner.

For bends with a rounded outer corner, the irregularities

disappear both in our scattering matrix coefficients and in

Nygård’s [4] noise measurements. At low Mach number

(����	
), the quasi-steady flow theories give a good

prediction of the transmission coefficients ����and �����.
4.2.2. Bends B and D: ���sharp bend with a rounded

outer corner

Results of quasi-steady flow theories have been also com-

pared to 3-D experimental and 2-D numerical data ob-

tained for the ���sharp bend with a rounded outer cor-

ner. The results are shown in figures 9 and 10 in terms

of the Mach number. The remarks made in the previous

section for the transmission coefficients (Figure 10) apply

also here. As observed in part I [1], the numerical predic-

tion of the reflection coefficients (Figure 9) is not as good

as in the case of the bend with sharp inner and outer edges.

This is expected to be an effect of the comparison between

2-D and 3-D data. The accuracy of the numerical data was

around ��. Note furthermore that the quasi-steady flow

theory does not take into account the effect of the geome-

try of the outer corner. The same value��is used in both

cases.

5. Conclusions

The aeroacoustic response of 90 degree bends with a sharp

inner edge has been studied. Bends with either a sharp or

rounded outer corner are considered. In the presence of

a main flow (�� ���), measurements have been carried

out by means of a two-source method and of a two-load

method. The first method is best suited to study the re-

sponse of the bends as a function of the dimensionless

frequency ����(������	
�) for relatively low fixed

Mach numbers (����	��), while the second method

enables a study of the dependence of the response with

the Mach number (
������	�) for a fixed frequency

(������	���). The measurements were performed for

pipes with circular cross-sections. These 3-D experimen-

tal results are compared to numerical predictions based

on the Euler equations for 2-D inviscid and compressible

flow and results from 2-D quasi-steady flow theories by

assuming that 2-D and 3-D data correspond to each other

for equal dimensionless frequencies����and equal Mach

numbers��. As observed in the absence of a main flow

(part I [1]), this assumption appears to give better results in

the case of a bend with a sharp outer corner than in the case

of a bend with a rounded outer corner. The main effect of

the main flow at low Mach numbers (����	��) appears

to be a drastic change in the behavior of the phase  !
of the reflection coefficient"�. A parallel can be drawn

between this behavior and the behavior of open pipe ter-

minations in the low-frequency limit where we distinguish

the case#$%�at�����and&'%�at#$���.
Up to Strouhal numbers of the order of unity, the ampli-

tude of the scattering matrix coefficients are well predicted

by the quasi-steady compressible flow theory. For higher

Strouhal numbers, the amplitude of the reflection coeffi-

cient approaches the limit of zero Mach number. Quasi-

steady flow theories do not predict irregularities of the

scattering matrix coefficients. These irregularities are ob-

served both in experiments and numerical simulations and

are expected to be a Strouhal number effect. These irregu-

larities around#$��	�are quite pronounced for the bend

with a sharp inner edge and a sharp outer corner. Nygård

[4] observed in that case a strong enhancement of turbulent

sound production compared to the case of the bend with a

rounded outer corner.

In the presence of a main flow, numerical predictions of

the upstream transmission coefficient
��and the down-

stream coefficients"��and
���become difficult due to the

non-uniform jet flow which appears after the flow separa-

tion at the sharp inner edge of the bends. This makes the

extraction of the far-field acoustic response of the bends

less accurate while giving the motivation for the use of

1-D extraction regions described in the part I [1]. Further

research should be carried out to improve the method of

extraction of acoustical data in turbulent flow regions.

Appendix – Hodograph method

The vena-contracta factor introduced in section 2.2 can be

determined by means of the hodograph method. The steps

of this method are detailed by Prandtl [13] and are briefly

described in this appendix. The hodograph method is used

to calculate the vena contracta factor of a bend with a sharp

inner edge and a sharp outer corner.

The hodograph method is a particular kind of confor-

mal transformation. The principle is to transform the real()*+,-plane (or --plane) into the velocity
(�*.,-plane (or/-plane). If an analytical expression of the complex po-
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tential�in the�-plane is determined, then a relationship

between�and�can be obtained by using potential theory.

The complex function����can always be split in a real

and an imaginary part:

����������	��
���	�������	�� (A1)

where



and
�

are the potential and the stream functions,

respectively.

Assuming the function����to be analytical, we use the

Cauchy-Rieman condition to find:������
�
������	��
�	������� (A2)

As we assume a potential flow, the velocity field can be

expressed in terms of the potential function



:���
���� (A3)���
��	� (A4)

The total differential��of the complex function����	�
is: �

���������
�
�����	

�
	�

���
���������
�
����
�	�����	�

�
	���������

�
���
�
	�����

�
�� (A5)

This can be written in integral form as:

���
�
���������� �

constant� (A6)

�����
�������������constant� (A7)

Figure A1 gives a scheme of the streamlines in a sharp

bend. Upstream of the bend (point A), the fluid is assumed

to flow in the
�

-direction towards the bend with a uniform

velocity ���� �!�. Note that the particular choice of

the
���	�reference frame is made in order to simplify the

application of the hodograph method to the bend. At the

sharp inner edge of the bend (point C), the flow separates

and forms a jet. Downstream of the bend (point B), the

flow becomes again uniform with a velocity�"��!��#�
and a cross-section$%smaller than the pipe cross-section$&, due to the vena-contracta effect. As the pressure along

the shear layer bounding the free jet has to be equal to that

of the surrounding stagnant fluid, the velocity at point C

is �'��#�!�(from Bernoulli’s equation). The point D

is a stagnation point at which the velocity is zero: �(��!�!�.

y

x

z-plane

A

B

Sj

Sp

C

D

Figure A1. Streamlines in a bend with a sharp inner edge and

a sharp outer corner: physical plane ()-plane). The dashed lines

correspond to the images.

(C)(A)0

(D)

u

v

-b (B)

ba

w-plane

Figure A2. Streamlines in a bend with a sharp inner edge and a

sharp outer corner: transformed plane (*-plane) by means of the

hodograph method. The dashed lines correspond to the images.

By writing the mass conservation, the vena-contracta

factor +,can be expressed in terms of the velocity val-

ues and
#
:

+,�$%$&� #� (A8)

From the streamlines in the (physical) �-plane shown in

figure A1, we can deduce the streamlines in the (hodo-

graph)�-plane (figure A2).
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All the streamlines start from point A and go to point

B, passing through points C or D. The points A and B are

therefore considered as a source and a sink, respectively,

and the complex potential��due to their presence would

be, in free space:

���������	
���������	
�������� (A9)

where
��is the volume flow.

By adding the effect of mirror images in the
�����and�����-axis, respectively, the complex potential becomes:

��������	�
������
������
��������
��������� (A10)

Finally, the presence of the jet is taken into account by

using the circle theorem [20]. As the velocity at point C is

equal to the velocity at point B, the streamline is a circle

of radius���and the complex potential becomes:

�������	�
��������
���������
�����������
����������(A11)

We find then:��� ����� �� ����	 ! ������
� �������� ���������"� (A12)

By applying equation A7, this yields:

#���	$
�!������"�%�&'()&�*���+�*�+�
�!����������",�#-� (A13)

where#-is the constant of integration.

Equation A13 is now applied to points C and D:#.��/0����� (A14)�#-��� $��1�-	 
�!��1-��1-"�1-��1�-,�#2����� !��1�-	 "
������#-� (A15)

where

�����3�	.

The constant#-can be deduced from equation A15:

#-����� ���1�-�� (A16)

Then, equation A14 yields:

4�
�!��1-��1-"���1�-��	1-�	��� (A17)

By using Newton’s method initialized with the experimen-

tal value
15-���%6found by Blevins [11], we can calcu-

late the vena-contracta factor:1-�15-� 4�15-�� 4� 1-�789���:�::� (A18)
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A. Hirschberg, M. Peters: Quasi-Steady Aero-Acoustic Re-

sponse of Orifices. J. Acoust. Soc. Am. 110 (2001) 1859–

1872.

[11] R. D. Blevins: Applied fluid dynamics handbook. Van Nos-

trand Reinhold Company Inc., New York, 1984.

[12] I. E. Idelchik: Handbook of Hydraulic Resistance: Coeffi-

cients of Local Resistance and of Friction. Israel program

for scientific translations, Jerusalem, 1966.

[13] L. Prandtl, O. G. Tietjens: Fundamentals of hydro- and

aeromechanics. Dover Editions, 1934.

[14] J. H. Huijnen: Aero-Acoustics of a Bend: Quasi-Stationary

Models. Tech. Rept. Technische Universiteit Eindhoven,

R-1476-A, december 2001.

22



Dequand et al.: Acoustics of 90 degree sharp bends, Part II ACTA ACUSTICA UNITED WITH ACUSTICA

Vol. 90 (2004)

[15] M. C. A. M. Peters, A. Hirschberg, A. J. Reijnen, A. P. J.

Wijnands: Damping and Reflection Coefficient Measure-

ments for an Pipe at Low Mach and Low Helmholtz Num-

bers. J. Fluid Mech. 256 (1993) 499–534.

[16] A. H. Shapiro: The Dynamics and Thermodynamics of

Compressible Fluid Flow, Volume 1. Ronald Press, New

York, 1953.

[17] S. W. Rienstra: A Small Strouhal Analysis for Acoustic

Wave-jet Flow-pipe Interaction. J. Sound Vib. 86 (1983)

539–556.

[18] L. van Lier, S. Dequand, A. Hirschberg, J. Gorter: Aeroa-

coustics of Diffusers: an Experimental Study of Typical

Industrial Diffusers at Reynolds Numbers of O(��
�
). J.

Acoust. Soc. Am. 109 (1) (2001) 108–115.

[19] S. Dequand: Duct Aeroacoustics: from Technological Ap-

plications to the Flute. Dissertation. Technische Univer-

siteit Eindhoven (Nl) and Université du Mans (Fr), 2001.
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