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This work is dedicated to the experimental analysis of the statistics of the scattering
of sound in a complex cavity. The tools, developed in other context, and especially the
Random Matrix Theory can explain very well the statistics of those cavities. An emphasis
is made in this study to the effect of dissipation and of flow on the cavity statistics.

I. Introduction

In the airflow system of many industrial applications, large enclosures connected to ducts or complex duct
networks can be found. In the aeronautical industry, a typical example is the air conditioning distribution
system of an aircraft. From the acoustical point of view, these systems have a size much larger than the
wavelength and an irregular geometry.

In the limit where the wavelength is small compared to the characteristic size of the enclosures, wave
propagation inside the enclosure can be modeled using ray trajectories. If the geometry is irregular and
in the limit of very short wavelength, those wave systems can exhibit ray chaotic properties. This wave
chaos has been intensively studied in the context of quantum mechanical waves,1 however, the concepts that
have been developed can generally be extended to classical waves2.3 In particular, Random Matrix Theory
(RMT) was shown to be an efficient tool to obtain results on the distribution of transmission and reflection
coefficients (e.g. Schanze et al.4 and Hemmady et al.5).

The idea behind the Random Matrix Theory of scattering is to assume that the dynamics of the wave
is so irregular that it implies random distribution of the scattering coefficients. Then it remains to define
the probability density of the scattering matrix; it is obtained by keeping only the fundamental properties
of the propagation, i.e. the conservation of energy and/or the reciprocity. For instance, by keeping only the
conservation of energy, the scattering matrix has to be unitary and the probability density is chosen as the
uniform distribution on the compact set of unitary matrices.6 The introduction of damping is also possible
by suitable modeling of the attenuation.7

Of course, acousticians rarely encounter truly lossless systems in practice. Furthermore, in duct systems
the flow is very often present. Thus in this paper, we explore experimentally a generic cavity in which we
control both the flow and the dissipation. We compare these experimental results with results predicted by
RMT.

II. Experimental setup

The cavity is a parallelepipedic box of 0.924 × 0.962 × 0.565 m3. The box is made of wood plates
(thickness 20 mm) and some stiffeners are screwed and glued on the external faces to avoid, as much as
possible, sound losses through the box enclosure. A cylinder of diameter 0.2 m, half a cylinder, and two
quarter of cylinder has been added in the box to break all its symmetries (See Fig. 1) and to insure a
chaotic behavior of rays in this box. The position of the vertical cylinder can be changed to ensure various
realizations of the chaotic acoustical field.

Porous material can be inserted in the box to control volume dissipation. This porous material is a
melamine foam (panels of 300 mm × 200 mm × 50 mm). The panels are sustained by deformable rods that
allow a variable orientation of the panels (See Fig. 2(a)). These panels can also be glued on one side of the
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Figure 1. Geometry of the chaotic box (CB) connected to the rigid duct

box.
A flow can be produced inside this chaotic box (CB) by an internal ventilation fan (See Fig. 2(b)). This

fan can provide a flow rate of 350 m3/h and has a diameter of 150 mm. The velocity at the fan exit is 5.5
m/s (1.6 % of the sound velocity). The mean velocity field in the CB is complex and has to be measured.

(a) (b)

Figure 2. Photographies of the chaotic box (CB) with two porous plates (a) end with the ventilation fan (b).

The reflection coefficient of CB is measured in a duct, with microphones, attached on one side of CB.
This duct (made in steel) has an inner diameter of 30mm and a thickness of 4 mm. In the frequency range
of interest (0–4000 Hz), only plane wave can propagate in the duct.

The reflection coefficient R is linked to the transfer function H21 between the microphone 2 and 2 by

R =
p−

p+
=
H21e

−jkx1 − e−jkx2

ejkx1 −H21ejkx2

where k = ω/c0 is the wave number, x1,2 are the position of the microphones 1, 2 relatively to the end of the
duct. Thus, from the measurement of H21, R can be known.8 The distance between the microphones and
the box entrance is x1 = −0.438m, x2 = −0.468m.

III. Reflection coefficient of the cavities

The absolute value of the reflection coefficient R measured for the CB is depicted in Fig. 3. It can be
observed on this figure, that the reflection coefficient has a mean part and a fluctuating part. The mean part
corresponds to the radiation impedance of a tube in the CB. It can be approximated by by the radiation
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Figure 3. Experimental absolute values of the reflection coefficient of the chaotic box (CB). Red continuous:
Cavity without porous; Blue continuous: Cavity with two porous panels; Green line: Theoretical radiation
coefficient computed for a tube radiating in an semi-infinite space

impedance of a tube in a semi-infinite space (green line in Fig. 3) whitch is given by

Zrad = 1− J1(2ka)

ka
+ j

S1(2ka)

ka
(1)

where k = ω/c0 is the wave number, a is the radius of the tube, J1 is the order 1 Bessel function of the first
kind and S1 is the order 1 Struve function.

The fluctuating part, corresponding to the chaotic behavior of this box is superimposed to this mean
part. The radiation impedance Zrad takes into account the imperfect coupling between the field within the
chaotic cavity and the incoming and outgoing waves in the connected tube. By suitably accounting for this
coupling details, it was hoped that only universal properties of the chaotic cavity remained.

However, there may exist acoustical rays that leave the tube and soon return to it. Those short ray
trajectories lead to non-universal contributions. Yeh et al.9 propose to take into account this effect by a
frequency average of single-realization data. This frequency smoothing suppresses the impedance fluctuations
due to long trajectories and reveals the features associated with short trajectories. The smoothing is made
by convoluting the experimental results with a Hanning window of bandwidth ∆f of 60 Hz. This limits the
study to the trajectories with the path length L < c0/∆f ' 6 m. Figure 4 shows the measured impedance,
the radiation impedance and the smoothed measured impedance.
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Figure 4. Real value of the measured impedance Z in red. Real value of the radiation impedance Zrad

in green. Real value of the smoothed impedance Zavg in blue. The black interval gives the length of the
smoothing window

The normalized impedance ζ can be found from the entrance impedance of the cavity Z by:9

Z = Re(Zavg) jζ + j Im(Zavg) where Z =
1 +R

1−R
. (2)

The variance of this normalized impedance ζ is linked to the loss parameter α by α = 1/(π Variance).
By measuring the variance on a sliding window of 500 Hz, the variation of the loss parameter as a function
of the frequency can be computed and is shown on Fig. 5. It can be see that the value of the variance of the
real and of the imaginary part are equal, in accordance to the theory. The loss parameter α increases with
frequency and the statistics had to be computed on a windows where α is almost constant and that contains
enough points to have a good convergence of the statistics. In the following, a window of 500 Hz with 1000
samples is chosen and 3 realizations are done by moving the cylinder, thus the statistics are made with 3000
points.

Figure 5. Loss parameter α as a function of the frequency obtaining by computing the variance of the real and
the imaginary part of the normalized impedance ζ. The variance is computed on a sliding window of 500 Hz.

The probability density function (PDF) of the normalized impedance ζ for the frequency band 3000–3500
Hz is given in Fig. 6 for the empty box. On this Figure, the experimental results are compared with the
RMT results with a loss parameter α= 4.15 which is the only fit parameter for PDF of the real and the
imaginary parts of ζ. The experimental results are in very good accordance with the RMT results. The
value of the loss parameter indicates that there is some losses in the empty box even if somme efforts have
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been made to minimize them. The reverberation time (the time for a decreasing of the field by 60 dB) of
this box is 0.74 s. The main dissipation process is supposed to be the coupling of the interior acoustical field
with small vibrations of the walls.

(a) (b)

Figure 6. Probability density function of ζ for CB on the frequency band 3000–3500 Hz. (a) Real part of ζ,
(b) Imaginary part of ζ. Red symbols: measurements, red line: RMT results.

IV. Effect of flow

A ventilation fan is introduced in the Chaotic Box to induce a circulation of the air in the box. The
main effect of the mean flow in the box is to break the time reversal symmetry.4 In this case, the statistics
of the impedance without time reversal symmetry is changed compared to the impedance with time reversal
symmetry.

To test the repeatability of the measurements with flow, two measurements without flow and two mea-
surements with flow have been done at different times. The results are depicted on Fig. 7. The two
measurements without flow are in red and magenta and the two measurements with flow are in blue and
cyan. It can be seen that the measurement are repeatable and that the flow effect is weak but observable
despite its very weak value (The maximum Mach number in the box is M = 0.016).

Figure 7. Absolute value of the reflection coefficient R with and without flow. The two measurements without
flow are in red and magenta and the two measurements with flow are in blue and cyan.

On Fig. 8, the experimental values of the PDF of ζ is plotted without flow (red symbols) and with
flow (blue symbols). There is a small but systematic deviation of the results with flow compared to the
results without flow. The RMT results when time reversal symmetry is broken10 (α= 4.15) have the same
tendencies: higher and sharper peak with flow. Again the results with flow are in good accordance with the
RMT results. A higher flow rate had to be tested to see if the results are closer to the values of the RMT
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when time reversal symmetry is broken.

(a) (b)

Figure 8. Probability density function of ζ for CB with and without flow on the frequency band 3000–3500
Hz. (a) Real part of ζ, (b) Imaginary part of ζ. Red symbols: measurements without flow. Blue symbols:
measurements with flow, red lines: RMT results with time reversal symmetry, blue lines: RMT results without
time reversal symmetry.

V. Effect of absorbing porous material

To test the effect of absorption, porous panels are introduced in the box. It can be seen in Fig. 2(a)
that those panels are putting inside the volume. The main expected effect is to change the wave number
k by introducing a complex part in it. The boundary conditions on the wall of the box is supposed to be
unchanged.

The effects of increasing the absorption can be seen in Fig. 9: The amplitude of the fluctuating part
is decreasing when the absorption increases. With higher absorption, the resonances are smoother and the
number of visible resonance decreases (the mean–spacing of the adjacent resonances increases).

Figure 9. Real value of the normalized impedance ζ with porous panels. Red empty box, magenta: 1 panel,
blue: 2 panels, cyan: 3 panels

The variation of the loss parameter as a function of the frequency for the 3 cases with porous panels can
be seen on Fig. 10. The loss parameter α increases with the number of porous panels and with frequency.
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Figure 10. Loss parameter α as a function of the frequency for the empty box (red symbols) and for the box
with panels of porous material (magenta symbols: 1 panel, blue symbols: 2 panels, cyan symbols: 3 panels)

On Fig. 11, the experimental values of the PDF of ζ is plotted for the 3 cases with porous panels. The
experimental values (symbols) are compared to the RMT values (lines) with α= 4.15, 15.3, 31.8 and 70.7.
The agreement between experimental and RMT results is good.

(a) (b)

Figure 11. Probability density function of ζ for CB with and without flow and with porous materials on the
frequency band 3000–3500 Hz. (a) Real part of ζ, (b) Imaginary part of ζ. Red symbols: measurements without
flow. Green symbols: measurements with flow, blue symbols: measurements with 2 plates of porous material.
The lines correspond to the RMT results with α=4.15 (red), α=15.3(magenta), α=31.8(blue), α=70.7(cyan).

VI. Conclusion

Experiments has be conducted to measure the acoustical reflection coefficient of a box which can exhibit
ray chaotic properties. We have verified that the normalized cavity impedance describes universal properties
of the reflection fluctuations by properly taking into account the coupling process between the measurement
duct and the cavity. The normalized impedance can be obtained by a mix of ensemble averages on various
realizations and of frequency averages over bandwidth containing several oscillations. The results show
that the direct processes (short ray trajectories) had to be removed to obtain converged statistics. The
random matrix theory (RMT) provides a good description of the one-port wave chaotic system The reflection
fluctuation statistics depend only on a single control parameter characterizing the cavity loss in the realm
of intermediate to high losses induced by porous material inside the box. The breaking of the time reversal
symmetry by a small airflow inside the box is also successfully described by the RMT.
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