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This paper presents a systematic analysis of direct and adjoint problems for sound propagation
with flow. Two scalar propagation operators are considered: the linearised potential equation
from Goldstein, and Pierce’s equation based on a high-frequency approximation. For both
models, the analysis involves compressible base flows, volume sources, surfaces that can be
vibrating and/or acoustically lined (using theMyers impedance condition), as well as far-field
radiation boundaries. For both models, the direct problems are fully described and adjoint
problems are formulated to define tailored Green’s functions. These Green’s functions are
devised to provide an explicit link between the direct problem solutions and the source terms.
These adjoint problems and tailored Green’s functions are particularly useful and efficient
for source localisation problems, or when stochastic distributed sources are involved. The
present analysis yields a number of new results, including the adjoint Myers condition for
the linearised potential equation, as well as the formulation of the direct and adjoint Myers
condition for Pierce’s equation. It is also shown how the adjoint problems can be recast in
forms that are readily solved using existing simulation tools for the direct problems. Results
presented in this paper are obtained using a high-order finite-element method. Several test
cases serve as validation for the approach using tailoredGreen’s functions. They also illustrate
the relative benefits of the two propagation operators.

Key words: adjoint method, linearised acoustic operators, Myers condition, vibrating
surfaces.

1. Introduction
Simulating the propagation of sound in non-uniform mean flows is of interest for many
practical applications. Various linearised acoustic operators are available in the literature
for this purpose (Astley 2009). Amongst them, the Linearised Euler Equations (LEE) are
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attractive as they provide a full description of the refraction of sound waves propagating
through sheared mean flows. A major drawback remains the computational cost associated to
their resolution both in the time domain and the frequency domain. Another shortcoming is
the presence of hydrodynamic instabilities, which can be difficult to handle as they can swamp
the acoustic field. In order to prevent the exponential growth of hydrodynamic instabilities, a
family of Acoustic Perturbation Equations (APE) has been developed by Ewert & Schröder
(2003). They are derived from the LEE by excluding non-acoustic modes, but can still be
costly to solve.
Various scalar linearised acoustic operators can be considered to reduce the computational

costs. For instance, the well-known linearised potential equation proposed by Blokhintzev
(1946) and Goldstein (1978) constitutes an efficient way to model sound propagation in
potential mean flows (Hamiche et al. 2019). It is written for the acoustic velocity potential
assuming that both vorticity and entropy effects are excluded from the mean flow and the
linear perturbations. Alternatively, Pierce (1990) proposed a scalar propagation model based
on a high-frequency approximation that can be applied to arbitrary steady base flows.
These propagationmodels can be solved directly, either in the frequency or the time domain,

for a specific geometry, mean flow and source distribution. In many cases it is advantageous
to solve the direct problem through the use of a tailored adjoint Green’s function, which is
itself a solution of an adjoint problem. Tailored adjoint Green’s functions are independent of
the source distribution but are functions of the observer position. They represent the transfer
functions between any source distribution and the solution at a single observer location. A
specific solution is obtained by a simple scalar product between the Green’s function and the
given source distribution, which is computationally efficient. This is useful when one has to
consider many different source distributions for a limited number of observer positions. This
is also particularly efficient when dealing with stochastic sources or for source localisation
problems. The use of adjoint problems and tailored Green’s functions have proved invaluable
to solve acoustic analogies, either for self noise from turbulence (Tam & Auriault 1998)
or for interaction noise (Schram 2009). A review of the adjoint-based methods for sound
propagation with flow can be found in Spieser & Bailly (2020). Note that previous work
considered free-field propagation or only involved rigid scatterers.
The present work provides a systematic analysis of direct and adjoint problems for sound

propagationwith flowbased onGoldstein’s and Pierce’swave equations. For both propagation
models, the analysis involves compressible base flows, volume sources, surfaces that can be
vibrating and/or acoustically lined as well as far-field radiation boundaries. The coupling
between the liner and the acoustic waves is modelled by the Myers impedance condition
(Myers 1980) assuming the presence of an infinitely thin boundary layer above the liner. For
both models, the direct problems are fully described and adjoint problems are formulated to
define tailored Green’s functions. These Green’s functions are devised to provide an explicit
link between the direct problem solutions and the source terms (volume source and surface
vibration). A number of new results are reported, including the adjoint Myers condition for
the Goldstein’s equation, as well as the formulation of the direct and adjoint Myers condition
for Pierce’s equation. We also examine how the adjoint problems can be recast in forms
that are readily solved using existing simulation tools for the direct problems. Several test
cases serve as validation for the approach using tailored adjoint Green’s functions. They also
illustrate the relative benefits of the two propagation operators compared to the LEE.
Tailored Green’s functions have initially been devised for analytical modelling (Howe

2003) but closed-form expressions only exist for canonical geometries. They can also be
obtained numerically, by solving the adjoint problem for each observer position. For this
purpose, the boundary element method has been used to solve the classical Helmholtz
equation (Schram 2009; Chaillat et al. 2022) or the convected Helmholtz equation (Hu et al.
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2005). In the present work, the direct and adjoint problems are solved in the frequency
domain using a high-order finite element method which has been previously applied to solve
propagation problems based on the Helmholtz equation (Bériot et al. 2016), Goldstein’s
equation (Gabard et al. 2018) and the LEE (Hamiche et al. 2019).
The paper is organized as follows. Sections 2 and 3 are considering the Goldstein’s and

Pierce’s equations, respectively, with each section discussing in details the formulation of
the direct and adjoint problems. Section 4 describes how the adjoint problems can be solved
efficiently using existing methods. In Section 5, several test cases are presented to validate
the theoretical developments from Sections 2 and 3. The relative performance of Pierce’s and
Goldstein’s wave operators in the presence of non-isothermal sheared flows is also assessed.

2. Goldstein’s Equation
We begin with the well-known propagation model for sound waves in a potential base flow
derived by Goldstein (1978), see also Blokhintzev (1946). Both the steady base flow and the
linear perturbations are assumed to derive from velocity potentials and to be homentropic,
hence excluding vorticity waves and entropy waves.

2.1. Direct problem
2.1.1. Governing equation
Goldstein (1978) derived the following scalar wave equation for the perturbation 𝜙 of the
velocity potential:

𝜌0
d0
d𝑡

(
1
𝑐20

d0𝜙
d𝑡

)
− ∇ · (𝜌0∇𝜙) = −𝑞 , (2.1)

where d0/d𝑡 = 𝜕/𝜕𝑡 + 𝒖0 ·∇ is the material derivative with respect to the mean flow velocity
𝒖0, 𝑐0 is the speed of sound, 𝜌0 is the mean flow density, and 𝑞 is a generic distributed source.
From the potential 𝜙 it is possible to compute the other acoustic quantities such as pressure,
density and velocity:

𝑝 = −𝜌0
d0𝜙
d𝑡

, 𝜌 = 𝑝/𝑐20 , 𝒖 = ∇𝜙 . (2.2)

This model is solved in the frequency domain using the implicit time dependence e+i𝜔𝑡 .
This amounts to replacing in the above expressions the material derivative d0/d𝑡 by its
frequency-domain counterpart D0/D𝑡 = i𝜔 + 𝒖0 · ∇.

2.1.2. Variational formulation
For a domain Ω with boundary 𝜕Ω, the variational formulation for equation (2.1) reads:∫

Ω

(
𝜌0∇𝜓 · ∇𝜙 − 𝜌0

𝑐20

D0𝜓
D𝑡
D0𝜙
D𝑡

)
dΩ +

∫
𝜕Ω

𝜌0𝜓

(
𝒖0 · 𝒏
𝑐20

D0𝜙
D𝑡

− 𝜕𝜙

𝜕𝑛

)
dΓ = −

∫
Ω

𝜓𝑞 dΩ ,

(2.3)
where 𝜓 is the test function associated to the velocity potential 𝜙, · is the complex conjugate
and 𝒏 is the unit outward normal vector on 𝜕Ω.
The boundary integral in (2.3) should be investigated to consider each different boundary

condition. In this paper, we will consider two types of boundary conditions: a lined and
vibrating surface denoted Γ and a radiation condition imposed on a boundary Γ∞ located in
the far field. We now describe in details these two boundary conditions.
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2.1.3. Boundary condition for a lined and vibrating surface
The boundary Γ is a lined and vibrating surface with acoustic admittance 𝐴 and a prescribed
normal velocity 𝑣𝑠. It is also assumed impervious to the mean flow, therefore 𝒖0 · 𝒏 = 0. The
corresponding boundary integral in the variational formulation (2.3) is

𝐼Γ = −
∫
Γ

𝜌0𝜓
𝜕𝜙

𝜕𝑛
dΓ . (2.4)

Due to the grazing mean flow, the presence of the acoustic treatment on the surface is
accounted for with the Myers (1980) condition which assumes an infinitely thin boundary
layer above the surface. It relates the normal fluctuating velocity 𝒖 · 𝒏 of the fluid above the
boundary layer to the normal displacement b of the fluid on the surface:

𝒖 · 𝒏 =
D0b
D𝑡

− b𝒏 · [(𝒏 · ∇)𝒖0] . (2.5)

where i𝜔b is the total normal velocity of the surface defined as a combination of the
prescribed normal velocity 𝑣𝑠 and the relative fluid velocity 𝐴𝑝 through the surface allowed
by the acoustic treatment:

i𝜔b = 𝑣𝑠 + 𝐴𝑝 . (2.6)

Upon introducing the Myers condition (2.5), the boundary term (2.4) becomes

𝐼Γ = −
∫
Γ

𝜌0𝜓

{
D0b
D𝑡

− b𝒏 · [(𝒏 · ∇)𝒖0]
}
dΓ . (2.7)

Eversman (2001a) shows that this integral can be simplified by using the following result
from vector analysis, see also Möhring (2001):

𝜌0𝜓b𝒏 · [(𝒏 · ∇)𝒖0] = ∇ · (𝜌0𝜓b𝒖0) − 𝒏 · [∇ × (𝒏 × 𝜌0𝜓b𝒖0)] , (2.8)

together with Stokes’ theorem. This yields the following expression for the boundary integral

𝐼Γ =

∫
Γ

𝜌0
D0𝜓
D𝑡

b dΓ +
∮
𝜕Γ

𝜌0𝜓b (𝒖0 × 𝒏) · d𝒍 , (2.9)

which involves a line integral along the contour of the boundary Γ. Following Eversman
(2001a) and Rienstra (2007), it can be argued that the normal displacement b should be
continuous between a lined surface and a rigid surface (to ensure the continuity of the
unsteady streamlines). The displacement should therefore vanish on the contour 𝜕Γ and the
contour integral can be removed. In the present case, this implies that both the admittance 𝐴
and the velocity 𝑣𝑠 should vanish on the contour of the surface Γ. With these assumptions,
the contour integral along 𝜕Γ is dropped in what follows. Note that this has an impact on
the solution, mostly in the vicinity of the liner discontinuity and on the reflection coefficient
(Gabard 2010).
After using (2.5) and (2.2), the boundary integral for a lined vibrating surface finally reads

𝐼Γ =

∫
Γ

𝜌0

i𝜔
D0𝜓
D𝑡

𝑣𝑠 dΓ −
∫
Γ

𝜌20𝐴

i𝜔
D0𝜓
D𝑡
D0𝜙
D𝑡
dΓ . (2.10)

The first integral is a forcing term that will appear on the right-hand side of the discretised
system.
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2.1.4. Far-field radiation condition
We now consider an outer surface Γ∞ located far away from the other surfaces and the volume
sources. The contribution from this surface to the variational formulation is

𝐼Γ∞ =

∫
Γ∞

𝜌0𝜓

(
𝒖0 · 𝒏
𝑐20

D0𝜙
D𝑡

− 𝜕𝜙

𝜕𝑛

)
dΓ . (2.11)

Without loss of generality, Γ∞ is chosen as the sphere defined by ∥𝒙∥ = 𝑟, hence 𝒏 = 𝒙/𝑟
and 𝜕/𝜕𝑛 = 𝜕/𝜕𝑟 .
For the Helmholtz equation (i.e. with no mean flow), one is left with 𝜕𝜙/𝜕𝑟 on this outer

boundary, and the Sommerfeld radiation condition states that the asymptotic behaviour of
𝜙 in the far field is such that 𝜕𝜙/𝜕𝑟 = −i𝑘𝜙 with 𝑘 = 𝜔/𝑐0. The Sommerfeld radiation
condition can be generalised to include the effect of a mean flow (Tam &Webb 1993; Bogey
& Bailly 2002; Bayliss & Turkel 1982). However these radiation conditions are not directly
applicable to the variational formulation (2.3). To derive the radiation condition in a form
suitable for (2.1), we have to determine the asymptotic behaviour of all the terms in the
parentheses in (2.11).
To that end, we consider the sound field radiated in a uniform mean flow by a generic

source term 𝑞(𝒙) on the right-hand side of (2.1). Using Green’s formula, the radiated sound
field can be written

𝜙(𝒙) = −
∫

𝑞(𝒚)𝐺 (𝒙 |𝒚) d𝒚 , (2.12)

where the free-field Green’s function 𝐺 (𝒙 |𝒚) is defined in three dimensions by

𝐺 (𝒙 |𝒚) = 1
4𝜋𝑟
exp

{
− i𝑘
𝛽2

[
𝑟 − (𝒙 − 𝒚) · 𝒖0

𝑐0

]}
, (2.13)

with 𝛽2 = 1 − ∥𝒖0∥2/𝑐20 and the distance 𝑟 defined as:

𝑟 =

√︃
𝛽2∥𝒙 − 𝒚∥2 + [(𝒙 − 𝒚) · 𝒖0]2/𝑐20 . (2.14)

Note that this Green’s function already satisfies the far-field radiation condition. After some
lengthy developments, it is possible to obtain the following result:

𝒖0 · 𝒏
𝑐20

D0𝐺 (𝒙 |𝒚)
D𝑡

− 𝜕𝐺 (𝒙 |𝒚)
𝜕𝑛

= i𝑘
𝑟

𝑟

(
1 + 𝛽2

i𝑘𝑟

) (
1 − 𝒙 · 𝒚

𝑟𝑟

)
𝐺 (𝒙 |𝒚) , (2.15)

where the derivatives on the left-hand side operate on the 𝒙 coordinate. Note that this result
is exact and valid for any value of 𝑟 , i.e. no far-field approximation has been made.
When the observer is in the geometric far field, which is defined by ∥𝒙∥ ≫ ∥𝒚∥, the term

𝒙 · 𝒚/(𝑟𝑟) in (2.15) can be neglected and 𝑟 ≃ 𝑟 =

√︃
𝛽2∥𝒙∥2 + (𝒙 · 𝒖0)2/𝑐20. From (2.12) and

(2.15) it is apparent that the velocity potential satisfies the following radiation condition in
the geometric far field:

𝒖0 · 𝒙
𝑐20𝑟

D0𝜙
D𝑡

− 𝜕𝜙

𝜕𝑟
= i𝑘

𝑟

𝑟

(
1 + 𝛽2

i𝑘𝑟

)
𝜙 + O

(
1
𝑟2

)
, when 𝑟 → +∞ . (2.16)

In the absence of mean flow, this radiation condition reduces to the standard Sommerfeld
condition, see for instance Section 4.5.4 in Pierce (2019). The corresponding boundary
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integral in the variational formulation is written

𝐼Γ∞ =

∫
Γ∞

i𝑘𝛼𝜌0𝜓𝜙 dΓ , (2.17)

where the coefficient 𝛼 is defined as:

𝛼 =
𝑟

𝑟

(
1 + 𝛽2

i𝑘𝑟

)
. (2.18)

In equation (2.16) we have kept the leading-order term, but it is also possible to derive
higher-order radiation conditions from (2.15), see Givoli (2004).
The corresponding radiation condition for a two-dimensional problem is given inAppendix

A.

2.1.5. Summary
To summarise, the direct problem for Goldstein’s equation is based on the propagation
equation (2.1) which includes a compressible, potential mean flow 𝒖0 and a volume sound
source 𝑞. Boundary conditions include surfaces that can be lined and/or vibrating, based on
the Myers condition (2.5), as well as the far-field radiation condition (2.16).
The corresponding variational formulation is equation (2.3) with the boundary terms given

in equations (2.10) and (2.17).

2.2. The adjoint operator and tailored Green’s functions
As explained above, it can be particularly useful to use a tailored adjoint Green’s function
to facilitate or accelerate the calculation of solutions to the direct problems, in this case by
providing an explicit expression for the acoustic potential 𝜙 in terms of the sources 𝑣𝑠 and 𝑞.
Such a tailored Green’s function is a solution to an adjoint problem that will be devised in
this section.
We first introduce scalar products between complex-valued functions, either on Ω or Γ as

follows:

⟨ 𝑓 , 𝑔⟩Ω =

∫
Ω

𝑓 (𝒚)𝑔(𝒚)dΩ𝑦 ⟨ 𝑓 , 𝑔⟩Γ =

∫
Γ

𝑓 (𝒚)𝑔(𝒚)dΓ𝑦 .

We then form the scalar product of Goldstein’s equation (2.1) with a generic Green’s function
𝐺𝜙 (𝒙, 𝒚) which remains to be defined:∫

Ω

𝐺𝜙 (𝒙, 𝒚)𝜌0(𝒚)
D0
D𝑡

[
1

𝑐20(𝒚)
D0
D𝑡

𝜙(𝒚)
]
− 𝐺𝜙 (𝒙, 𝒚)∇ · [𝜌0(𝒚)∇𝜙(𝒚)] dΩ𝑦

= −
∫
Ω

𝐺𝜙 (𝒙, 𝒚)𝑞(𝒚)dΩ𝑦 , (2.19)

which is valid for any point 𝒙 located in Ω and where the integrals are performed over 𝒚. In
the following expressions, we will omit the 𝒙 and 𝒚 dependence to simplify the notations.
However, to avoid ambiguities, note that all quantities are only functions of 𝒚, except for𝐺𝜙,
and all the derivatives are applied with respect to 𝒚. Integrating twice by parts the expression
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above yields:∫
Ω

𝜙

[
𝜌0
D0
D𝑡

(
1
𝑐20

D0𝐺𝜙

D𝑡

)
− ∇𝑦 ·

(
𝜌0∇𝑦𝐺𝜙

) ]
dΩ𝑦

+
∫
𝜕Ω

𝜌0(𝒖0 · 𝒏)
𝑐20

(
𝐺𝜙

D0𝜙
D𝑡

− 𝜙
D0𝐺𝜙

D𝑡

)
+ 𝜌0

(
𝜙
𝜕𝐺𝜙

𝜕𝑛𝑦
− 𝐺𝜙

𝜕𝜙

𝜕𝑛𝑦

)
dΓ𝑦 = −

∫
Ω

𝐺𝜙𝑞 dΩ𝑦 .

(2.20)

Subtracting equations (2.20) and (2.19) yields the integral form of Lagrange’s identity which
relates the direct and adjoint operators, see for instance Section IV.4 in Dennery &Krzywicki
(2012). The adjoint operator to Goldstein’s equation (2.1) is readily found in the square
brackets in (2.20). In this case, the direct and adjoint operators are identical, which is
expected since Goldstein’s equation is self-adjoint.

2.2.1. Adjoint equation
Our aim is now to identify a tailored adjoint Green’s function that provides an explicit solution
for the direct problem defined in the previous section. In other words, we have to select the
governing equation and the boundary conditions for 𝐺𝜙 so that the velocity potential 𝜙 can
be written explicitly in terms of the source terms 𝑞 and 𝑣𝑠. Beginning with the governing
equation for 𝐺𝜙, we would like the first integral in (2.20) to reduce to 𝜙(𝒙), i.e. 𝐺𝜙 should
be such that ∫

Ω

𝜙

[
𝜌0
D0
D𝑡

(
1
𝑐20

D0𝐺𝜙

D𝑡

)
− ∇𝑦 ·

(
𝜌0∇𝑦𝐺𝜙

) ]
dΩ𝑦 = 𝜙(𝒙) . (2.21)

This can be achieved if 𝐺𝜙 is a solution to

𝜌0
D0
D𝑡

(
1
𝑐20

D0𝐺𝜙

D𝑡

)
− ∇𝑦 ·

(
𝜌0∇𝑦𝐺𝜙

)
= 𝛿(𝒙 − 𝒚) , (2.22)

which shows that 𝐺𝜙 is indeed a Green’s function for the adjoint operator.
Looking back at equation (2.20), the solution 𝜙(𝒙) is now given in terms of integrals on Γ

and Ω. While the latter depends only on 𝑞 and 𝐺𝜙, the boundary integral still involves 𝜙. In
order to obtain an explicit expression for 𝜙, we have to choose the boundary conditions for
the Green’s function so that the boundary integral involves only 𝐺𝜙 and 𝑣𝑠.

2.2.2. Lined vibrating wall
We first consider the integral on the boundary Γ representing a lined and vibrating surface,
as described in Section 2.1.3. Since 𝒖0 · 𝒏 = 0 on this surface, the relevant boundary integral
in (2.20) is

𝐽Γ =

∫
Γ

𝜌0

(
𝜙
𝜕𝐺𝜙

𝜕𝑛𝑦
− 𝐺𝜙

𝜕𝜙

𝜕𝑛𝑦

)
dΓ𝑦 . (2.23)

The second term in this integral is the same as in (2.4) with 𝜓 replaced by 𝐺𝜙. Using the
same analysis as in Section 2.1.3 for the formulation of the Myers boundary condition, one
gets

𝐽Γ =

∫
Γ

𝜌0

i𝜔
D0𝐺𝜙

D𝑡
𝑣𝑠 + 𝜌0𝜙

𝜕𝐺𝜙

𝜕𝑛𝑦
−

𝜌20𝐴

i𝜔
D0𝐺𝜙

D𝑡
D0𝜙
D𝑡
dΓ . (2.24)
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To proceed further, we use similar steps to those described in Section 2.1.3 for the formulation
of the Myers condition: i.e. the derivative in D0𝜙/D𝑡 is integrated by parts, an expression
similar to (2.8) is used, and we apply Stokes’ theorem. This yields

𝐽Γ =

∫
Γ

𝜌0

i𝜔
D0𝐺𝜙

D𝑡
𝑣𝑠 dΓ +

∮
𝜕Γ

𝜙
𝜌20𝐴

i𝜔
D0𝐺𝜙

D𝑡
(𝒖0 × 𝒏) · d𝒍

+
∫
Γ

𝜌0𝜙

{
𝜕𝐺𝜙

𝜕𝑛𝑦
− D0
D𝑡

(
𝜌0𝐴

i𝜔
D0𝐺𝜙

D𝑡

)
+ 𝜌0𝐴

i𝜔
D0𝐺𝜙

D𝑡
𝒏 · [(𝒏 · ∇𝑦)𝒖0]

}
. (2.25)

Recall that the aim is to remove 𝜙 from this expression. Firstly, we can use the same
argument as Eversman (2001a) for the direct problem: assuming that the admittance 𝐴 varies
continuously on Γ, the contour 𝜕Γ can be located on the rigid wall and the contour integral
above vanishes. Secondly the last integral in (2.25) is eliminated by choosing the following
boundary condition for the tailored adjoint Green’s function 𝐺𝜙:

𝜕𝐺𝜙

𝜕𝑛𝑦
=
D0[
D𝑡

− [𝒏 · [(𝒏 · ∇𝑦)𝒖0] with i𝜔[ = 𝜌0𝐴
D0𝐺𝜙

D𝑡
, on Γ . (2.26)

This expression is the adjoint Myers condition. It takes a similar form to the original
impedance condition (2.5) for the direct problem except for several important differences.
There is a sign difference compared to (2.5) and the admittance 𝐴 is replaced by its complex
conjugate. In addition, the source term 𝑣𝑠 does not appear in the adjoint impedance condition
(2.26) for the tailored Green’s function 𝐺𝜙.

2.2.3. Radiation condition
The contribution of the radiation boundary Γ∞ in Equation (2.20) is

𝐽Γ∞ =

∫
Γ∞

𝜌0(𝒖0 · 𝒏)
𝑐20

(
𝐺𝜙

D0𝜙
D𝑡

− 𝜙
D0𝐺𝜙

D𝑡

)
+ 𝜌0

(
𝜙
𝜕𝐺𝜙

𝜕𝑛𝑦
− 𝐺𝜙

𝜕𝜙

𝜕𝑛𝑦

)
dΓ𝑦 . (2.27)

Using the radiation condition (2.16) satisfied by 𝜙 on Γ∞, this contribution becomes

𝐽Γ∞ =

∫
Γ∞

𝜌0𝜙

(
𝜕𝐺𝜙

𝜕𝑛𝑦
− 𝒖0 · 𝒏

𝑐20

D0𝐺𝜙

D𝑡
− i𝑘𝛼𝐺𝜙

)
dΓ𝑦 , (2.28)

with 𝛼 defined in (2.17). For this contribution to vanish, the Green’s function 𝐺𝜙 should
satisfy the following adjoint radiation condition on Γ∞:

𝒖0 · 𝒚
𝑐20𝑟

D0𝐺𝜙

D𝑡
−
𝜕𝐺𝜙

𝜕𝑟
= −i𝑘𝛼𝐺𝜙 . (2.29)

It is similar to the direct radiation condition (2.16) except that i𝑘𝛼 is replaced by its complex
conjugate −i𝑘𝛼. This is a consequence of the fact that the adjoint problem is anti-causal. The
adjoint radiation condition only allows inward-propagating waves, which is the opposite of
the radiation condition for the direct problem which allows only outward propagating waves.

2.2.4. Summary and discussion
The acoustic potential 𝜙 can be explicitly written in terms of the source terms 𝑣𝑠 and 𝑞

𝜙(𝒙) =
〈
−𝜌0
D0𝐺𝜙

D𝑡
,
𝑣𝑠

i𝜔

〉
Γ

−
〈
𝐺𝜙, 𝑞

〉
Ω
= −

∫
Γ

𝜌0

i𝜔
D0𝐺𝜙

D𝑡
𝑣𝑠 dΓ𝑦 −

∫
Ω

𝐺𝜙𝑞 dΩ𝑦 , (2.30)
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provided that the tailored adjoint Green’s function 𝐺𝜙 is defined as follows:

𝜌0
D0
D𝑡

(
1
𝑐20

D0
D𝑡

𝐺𝜙

)
− ∇𝑦 ·

(
𝜌0∇𝑦𝐺𝜙

)
= 𝛿(𝒙 − 𝒚) in Ω

𝜕𝐺𝜙

𝜕𝑛𝑦
=
D0[
D𝑡

− [𝒏 · [(𝒏 · ∇𝑦)𝒖0] with i𝜔[ = 𝜌0𝐴
D0𝐺𝜙

D𝑡
on Γ

𝒖0 · 𝒚
𝑐20𝑟

D0𝐺𝜙

D𝑡
−
𝜕𝐺𝜙

𝜕𝑟
= −i𝑘𝛼𝐺𝜙 on Γ∞

(2.31)

It is worth noting a number of points concerning the direct and adjoint problems.
• While the propagation operator is self-adjoint, the boundary conditions are not self-

adjoint since they differ between the direct and adjoint problems. The practical implications
of these differences will be discussed in Section 4.
• The surface admittance 𝐴 does not explicitly appear in Eq. (2.30). It is implicitly taken

into account by the tailored Green’s function 𝐺𝜙 through the adjoint impedance condition
(2.26) it satisfies on the surface Γ.
• In the expression (2.30), it is clear that 𝒙 represents the observer position while the

source position 𝒚 moves on the surface Γ and in the volume Ω. However, in the definition
(2.31) of the tailored adjoint Green’s function, the differential equation is written in terms
of 𝒚 (the derivative in the equation and the boundary conditions are applied with respect to
𝒚 and not 𝒙). This means that in (2.31) the source position is 𝒙 and the observer position
is 𝒚, which is the reverse from (2.30). The reciprocity principle appears naturally from the
derivation of 𝐺𝜙 presented above.

• The tailored adjoint Green’s function 𝐺𝜙 in equation (2.30) can be understood as the
acoustic transfer function between the volume source 𝑞 and the velocity potential 𝜙 at the
observer position 𝒙. Likewise, the quantity −𝜌0D0𝐺𝜙/D𝑡 is the transfer function between
the surface displacement 𝑣𝑠/(i𝜔) and the velocity potential 𝜙(𝒙).
In the analysis above, the tailored adjoint Green’s function 𝐺𝜙 was devised to yield an

explicit expression for the velocity potential. If one wishes to compute the acoustic pressure
instead, it is possible to compute 𝑝(𝒙) = −𝜌0D0𝜙/D𝑡 (with derivatives with respect to 𝒙)
from equation (2.30). This can be cumbersome as equation (2.31) yields 𝐺𝜙 as a function
of 𝒚 for a fixed 𝒙. Instead it is preferable to define another tailored adjoint Green’s function
𝐺 𝑝 (𝒙, 𝒚) that relates directly 𝑝 to the source terms 𝑞 and 𝑣𝑠 through

𝑝(𝒙) =
〈
−𝜌0
D0𝐺 𝑝

D𝑡
,
𝑣𝑠

i𝜔

〉
Γ

−
〈
𝐺 𝑝, 𝑞

〉
Ω

, (2.32)

which has the exact same form as (2.30). This is achieved by modifying the right-hand side
of equation (2.22) so that the integral in (2.21) yields 𝑝(𝒙), namely the adjoint equation for
𝐺 𝑝 reads:

𝜌0
D0
D𝑡

(
1
𝑐20

D0𝐺 𝑝

D𝑡

)
− ∇𝑦 ·

(
𝜌0∇𝑦𝐺 𝑝

)
= 𝜌0

D0
D𝑡

𝛿(𝒙 − 𝒚) . (2.33)

It is straightforward to show that 𝐺 𝑝 satisfies the same adjoint boundary conditions as in
(2.31). A similar methodology can be used to compute the acoustic velocity field 𝒖 instead
of 𝜙(𝒙).
A final comment is that the generic source term 𝑞 can be easily replaced by a distribution of

dipole sources by writing 𝑞 = ∇ · 𝒇 where 𝒇 is the dipole strength. The additional divergence
in equation (2.30) can be transferred onto the Green’s function by integrating by parts to
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write

𝜙(𝒙) = −
∫
Γ

𝜌0

i𝜔
D0𝐺𝜙

D𝑡
𝑣𝑠 dΓ𝑦 +

∫
Ω

𝒇 · ∇𝑦𝐺𝜙 dΩ𝑦 . (2.34)

A similar approach can be used for other types of sources, such as a quadrupole distribution.

3. Pierce’s Equation
Pierce (1990) proposed two propagation models derived in the high-frequency limit for an
arbitrary steady base flow. The first equation is in fact the same as Goldstein’s model (2.1)
with the velocity potential 𝜙 as variable. Pierce (1990) has thus shown that Goldstein’s
equation is also valid for arbitrary base flows in the high-frequency limit and the analysis
in Section 2.2.1 is therefore also valid in this case. In the present Section we will focus on
the second model from Pierce (1990), namely equation (27). Details of the analysis will not
be repeated as these are similar to the previous Section. We will instead highlight the novel
results and the key differences with Goldstein’s equation.

3.1. Direct problem
Instead of the velocity potential 𝜙, Pierce (1990) proposes to use the momentum potential 𝜑
which is such that 𝑝 = D0𝜑/D𝑡 and 𝜌0𝒖 = −∇𝜑. In the high-frequency limit, this variable
satisfies the following propagation equation

∇ ·
(
1
𝜌0

∇𝜑

)
− 𝜌0

D0
D𝑡

(
1

𝜌20𝑐
2
0

D0𝜑
D𝑡

)
= −𝑞 , (3.1)

which is valid for an arbitrary steady base flow, i.e. compressible, rotational and not
necessarily homentropic. Compared to equation (27) in Pierce (1990) we have added a
generic source distribution on the right-hand side. For a computational domain Ω with
boundary 𝜕Ω, the variational formulation corresponding to (3.1) reads∫

Ω

1
𝜌0

(
1
𝑐20

D0𝜓
D𝑡
D0𝜑
D𝑡

− ∇𝜓 · ∇𝜑

)
dΩ +

∫
𝜕Ω

𝜓

𝜌0

(
𝜕𝜑

𝜕𝑛
− 𝒖0 · 𝒏

𝑐20

𝐷0𝜑

D𝑡

)
dΓ = −

∫
Ω

𝜓𝑞dΩ ,

(3.2)
with the test function 𝜓. Like in equation (2.3) for Goldstein’s equation, the volume integral
above is Hermitian, which is consistent with the fact that there is an energy conservation
principle associated with Pierce’s equation (3.1), see Section 2.4 in Möhring (1999).
TheMyers condition is traditionally usedwith Goldstein’s equation (2.1), but we show here

how it can be included in the variational formulation for Pierce’s equation. When formulated
in terms of the potential 𝜑 the Myers impedance condition (2.5) becomes

𝜕𝜑

𝜕𝑛
= −𝜌0

{
D0b
D𝑡

− b𝒏 · [(𝒏 · ∇)𝒖0]
}
, (3.3)

with

i𝜔b = 𝑣𝑠 + 𝐴
D0𝜑
D𝑡

, (3.4)

where b is again the normal displacement of the surface. Recalling that 𝒖0 · 𝒏 = 0 on Γ, the
boundary integral on surface Γ in Eq. (3.2) reduces to

𝐼Γ =

∫
Γ

𝜓

𝜌0

𝜕𝜑

𝜕𝑛
dΓ = −

∫
Γ

𝜌0

(
𝜓

𝜌0

) {
D0b
D𝑡

− b𝒏 · [(𝒏 · ∇)𝒖0]
}
dΓ . (3.5)
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Following the same analysis as in Section 2.1.3 (in particular using (2.8) where 𝜓 is replaced
by 𝜓/𝜌0), it is possible to write

𝐼Γ =

∫
Γ

𝜌0

i𝜔
D0
D𝑡

(
𝜓

𝜌0

)
𝑣𝑠 dΓ +

∫
Γ

𝜌0𝐴

i𝜔
D
D𝑡

(
𝜓

𝜌0

)
D𝜑
D𝑡
dΓ . (3.6)

This formulation of the Myers impedance condition for Pierce’s propagation equation is
consistent with Eversman (2001a), i.e. the displacement b and admittance 𝐴 are assumed
to vary smoothly between a lined and rigid surfaces. The main difference with (2.10) is the
substitution of 𝜓 by 𝜓/𝜌0, which will be further discussed in Section 4.
Concerning the radiation boundary Γ∞, the analysis of the far-field behaviour of the

velocity potential 𝜙 given in Section 2.1.4 also applies to the potential 𝜑. It therefore satisfies
the same radiation condition (2.16) as 𝜙 and the boundary integral on Γ∞ in equation (3.2)
becomes

𝐼Γ∞ = −
∫
Γ∞

i𝑘𝛼
𝜓𝜑

𝜌0
dΓ . (3.7)

3.2. Adjoint problem
Pierce’s equation (3.1) can also be solved using a tailored adjoint Green’s function, following
the same approach as described in Section 2.2 for Goldstein’s equation. One starts by
forming the scalar product between Pierce’s equation (3.1) and a Green’s function 𝐻𝜑 (𝒙, 𝒚).
Integrating by parts twice leads to∫

Ω

𝜑

∇𝑦 ·
(
1
𝜌0

∇𝑦𝐻𝜑

)
− 𝜌0

D0
D𝑡

(
1

𝜌20𝑐
2
0

D0𝐻𝜑

D𝑡

) dΩ𝑦

+
∫
𝜕Ω

𝒖0 · 𝒏
𝜌0𝑐

2
0

(
𝜑
D0𝐻𝜑

D𝑡
− 𝐻𝜑

D0𝜑
D𝑡

)
+ 1
𝜌0

(
𝐻𝜑

𝜕𝜑

𝜕𝑛
− 𝜑

𝜕𝐻𝜑

𝜕𝑛

)
dΓ𝑦

= −
∫
Ω

𝐻𝜑𝑞 dΩ𝑦 , (3.8)

where the integrals and the derivatives operate on the 𝒚 coordinate.
Again, the objective is to tailor the Green’s function 𝐻𝜑 to obtain an explicit expression

for 𝜑 in terms of the sources 𝑞 and 𝑣𝑠. Requiring that the first integral in the above expression
reduces to 𝜑(𝒙) leads to the following adjoint equation for the Green’s function:

∇ ·
(
1
𝜌0

∇𝐻𝜑

)
− 𝜌0

D0
D𝑡

(
1

𝜌20𝑐
2
0

D0𝐻𝜑

D𝑡

)
= 𝛿(𝒙 − 𝒚) , (3.9)

where the derivatives are taken with respect to 𝒚. Comparing with the direct problem (3.1)
it is clear that Pierce’s equation is self-adjoint.
The boundary conditions for 𝐻𝜑 are now selected to remove 𝜑 and its derivatives from

the boundary integral in (3.8). For the lined vibrating surface Γ, after using the fact that
𝒖0 · 𝒏 = 0 and introducing the Myers condition (3.3) for Pierce’s equation, the contribution
to the boundary integral becomes:

𝐼Γ = −
∫
Γ

𝐻𝜑

D0b
D𝑡

− 𝐻𝜑b𝒏 · [(𝒏 · ∇)𝒖0] +
𝜑

𝜌0

𝜕𝐻𝜑

𝜕𝑛
dΓ . (3.10)
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Following the same reasoning as in Section 2.2, this contribution can be written as

𝐼Γ =

∫
Γ

𝜌0𝑣𝑠

i𝜔
D0𝐻𝜑

D𝑡
dΓ , (3.11)

provided the tailored Green’s function satisfies the following adjoint Myers condition for
Pierce’s equation:

𝜕𝐻𝜑

𝜕𝑛
= 𝜌20

{
D0a
D𝑡

− a𝒏 · [(𝒏 · ∇)𝒖0]
}
with a =

𝐴

i𝜔
D0
D𝑡

(
𝐻𝜑

𝜌0

)
. (3.12)

On the far-field surface Γ∞, the solution 𝜑 satisfies the radiation condition (2.16) and the
adjoint radiation condition for 𝐻𝜑 is readily identified as

𝒖0 · 𝒚
𝑐20𝑟

D0𝐻𝜑

D𝑡
−
𝜕𝐻𝜑

𝜕𝑟
= −i𝑘𝛼𝐻𝜑 , (3.13)

which is the same as (2.29).
As a consequence, the potential 𝜑 for an observer 𝒙 can be explicitly written in terms of

the sources 𝑣𝑠 and 𝑞 as:

𝜑(𝒙) = −
∫
Γ

𝜌0

i𝜔
D0𝐻𝜑

D𝑡
𝑣𝑠dΓ𝑦 −

∫
Ω

𝐻𝜑𝑞dΩ𝑦 = −
〈
D0𝐻𝜑

D𝑡
,
𝜌0𝑣𝑠

i𝜔

〉
Γ

−
〈
𝐻𝜑 , 𝑞

〉
Ω

, (3.14)

provided the tailored Green’s function 𝐻𝜑 satisfies the adjoint problem defined by equations
(3.9), (3.12) and (3.13).
All the comments in Section 2.2.4 concerning the adjoint problem for Goldstein’s equation

also applies here. In particular, if one is interested in computing another acoustic quantity
than 𝜑, it is possible to modify the right-hand side of (3.9) accordingly. For instance, to
obtain an explicit expression for the pressure field similar to (3.14), the required tailored
adjoint Green’s function 𝐻𝑝 satisfies

∇ ·
(
1
𝜌0

∇𝐻𝑝

)
− 𝜌0

D0
D𝑡

(
1

𝜌20𝑐
2
0

D0𝐻𝑝

D𝑡

)
=
D0
D𝑡

𝛿(𝒙 − 𝒚) , (3.15)

where the derivatives apply on the 𝒚 coordinate. The tailored adjoint Green’s function 𝐻𝑝

also satisfies the boundary conditions (3.12) and (3.13).

4. Solution procedure
We now discuss the computation of the direct and adjoint problems. A first step is to rewrite
the adjoint problems in forms that are closer to the direct problems. Then a high-order
finite-element method is introduced to efficiently solve these differential equations.

4.1. Flow reversal theorem
While the two propagation operators (2.1) and (3.1) considered in this paper are self-
adjoint, the associated boundary conditions are not self-adjoint. As shown above, the Myers
impedance condition (written in (2.5) (3.3) for 𝜙 and 𝜑, respectively) differs in the adjoint
problems for the tailored Green’s functions (see (2.26) and (3.12) for 𝜙 and 𝜑, respectively).
Similarly, the radiation conditions (2.16) and (2.15) differ between the direct and adjoint
problems. This implies that non-reflecting conditions and buffer zones, such as perfectly
matched layers, would have to be rewritten specifically for the adjoint problems where the
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radiation condition is anti-causal. Having to implement separate solvers for the direct and
adjoint problems is a hindrance that can be partly avoided.
To that end, one has to reverse the mean flow direction (i.e. substitute 𝒖0 by −𝒖0) and

to take the complex conjugate of the propagation equation and the boundary conditions.
For Goldstein’s equation, the governing equations (2.31), (2.26) and (2.16) for the tailored
adjoint Green’s function 𝐺𝜙 become:

𝜌0
D0
D𝑡

(
1
𝑐20

D0𝐺𝜙

D𝑡

)
− ∇ ·

(
𝜌0∇𝐺𝜙

)
= 𝛿(𝒙 − 𝒚) in Ω

𝜕𝐺𝜙

𝜕𝑛
= −D0[

D𝑡
+ [𝒏 · [(𝒏 · ∇)𝒖0] with [ =

𝜌0𝐴

i𝜔
D0𝐺𝜙

D𝑡
on Γ

𝒖0 · 𝒚
𝑐20𝑟

D0𝐺𝜙

D𝑡
−
𝜕𝐺𝜙

𝜕𝑟
= i𝑘𝛼𝐺𝜙 on Γ∞

(4.1)

It is apparent that these equations for 𝐺𝜙 are consistent with the direct problem for 𝜙 given
in Section 2.1. Hence, existing solvers for the direct problem can be directly reused for the
adjoint problem by solving for the complex conjugate of the adjoint Green’s function and by
reversing the mean flow direction. This so-called flow reversal theorem allows to relate more
easily the direct and adjoint problems, see Godin (1997), Möhring (1978) and Eversman
(2001b).
For Pierce’s equation, the governing equations (3.1), (3.6) and (2.16) for the tailored adjoint

Green’s function 𝐻𝜑 become:

∇ ·
(
1
𝜌0

∇𝐻𝜑

)
− 𝜌0

D0
D𝑡

(
1

𝜌20𝑐
2
0

D0𝐻𝜑

D𝑡

)
= 𝛿(𝒙 − 𝒚) in Ω

𝜕𝐻𝜑

𝜕𝑛
= −𝜌20

{
D0a
D𝑡

− a𝒏 · [(𝒏 · ∇)𝒖0]
}
with a =

𝐴

i𝜔
D0
D𝑡

(
𝐻𝜑

𝜌0

)
on Γ

𝒖0 · 𝒚
𝑐20𝑟

D0𝐻𝜑

D𝑡
−
𝜕𝐻𝜑

𝜕𝑟
= i𝑘𝛼𝐻𝜑 on Γ∞

(4.2)

It can be noted that the governing equation and the radiation condition are identical to the
direct problem for 𝜑, see (3.1) and (2.16). However, the impedance condition differs from
that of the direct problem (3.6), except in the case of an incompressible base flow.
The variational form for the system (4.2) reads∫

Ω

1
𝜌0

(
1
𝑐20

D0𝐻𝜑

D𝑡
D0𝜓
D𝑡

− ∇𝐻𝜑 · ∇𝜓
)
dΩ

−
∫
𝜕Ω

𝜓

𝜌0

(
𝒖0 · 𝒏
𝑐20

𝐷0𝐻𝜑

D𝑡
−
𝜕𝐻𝜑

𝜕𝑛

)
dΓ =

∫
Ω

𝜓𝛿(𝒙 − 𝒚)dΩ . (4.3)

The contribution of the impedance condition to the boundary integral is

𝐼Γ =

∫
Γ

𝜌0𝐴

i𝜔
D0
D𝑡

(
𝐻𝜑

𝜌0

)
D0𝜓
D𝑡
dΓ . (4.4)
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4.2. High-order finite element model
We use a high-order continuous Galerkin finite element method (FEM) equipped with a
basis of integrated Legendre polynomials to discretize the weak formulations of the direct
and adjoint problems. In Bériot et al. (2016), this approach was shown to provide substantial
reductions in memory and CPU time when compared to conventional finite elements for
acoustic applications. The benefits of high-order FEM (e.g. low dispersion error, exponential
convergence for smooth solutions) are also retained in the presence of background mean
flows (Bériot et al. 2013). In the numerical simulations, it is helpful to maintain an equivalent
discretization accuracy when varying the frequency or the Mach number. We resort to the a
priori error indicator proposed in Bériot & Gabard (2019), which adjusts the order across
the mesh so as to achieve a given, user-defined 𝐿2-error target accuracy 𝐸𝑇 . In practice,
the edge orders are first determined based on a 1D error indicator, which accounts for the
local in-flow dispersion relation properties and possible edge curvature. In a second step,
the element interior (directional) orders are assigned through a set of simple element-based
dependent conformity rules. The orders are here defined to be in the range 𝑝FEM ∈ [1, 10].
The governing equations of the direct and adjoint problems contain singular source terms,

which require special attention. In practice, the point sources are enforced directly using
a Dirac in the weak form. Error estimates have been derived in the literature for such
elliptic problems with singular right-hand sides, see for instance Bertoluzza et al. (2018).
They indicate that the preponderant part of the error is located in the close vicinity around
the source. A usual recommendation is therefore to use graded meshes, so as to confine
the singularity errors in a more compact region. However, mesh refinements increase model
complexity and may become unwieldy when several Dirac source terms are present. In Koppl
& Wohlmuth (2014), it is shown that the optimal convergence of high-order finite elements
is recovered without mesh grading, if one excludes the one-ring neighbourhood elements to
the point source from the error evaluation. In practice, one is usually not interested in getting
a very accurate solution in the few elements directly surrounding the singularity. As a result,
in this study, no mesh refinement is applied around the source when computing the tailored
adjoint Green’s functions.

4.3. Acoustic transfer vectors
Once discretised, the explicit expression (2.30) for the solution 𝜙 can be written as scalar
products between complex-valued vectors:

𝜙(𝒙) = 𝒂𝑇𝜙 (𝒙)𝒗𝑠 + 𝒃𝑇𝜙 (𝒙)𝒒 , (4.5)

where 𝑇 denotes the Hermitian transpose. A similar expression can be written for 𝜑 using
(3.14). The vectors 𝒗𝑠 and 𝒒 contain the degrees of freedom representing the source terms 𝑣𝑠
and 𝑞 on the finite-element mesh. The vectors 𝒂𝜙 and 𝒃𝜙 can be easily identified from (2.30)
and computed using the solution for𝐺𝜙. These vectors are sometimes referred to as Acoustic
Transfer Vectors as they act as transfer functions between the distributed sources 𝑣𝑠 and 𝑞
and the solution observed at a point 𝒙 (Tournour et al. 2000). These vectors are particularly
useful when considering large numbers of different source distributions. For each individual
source distribution, the new solution 𝜙 can be calculated very rapidly using (4.5) (a scalar
product has linear complexity with respect to the number of degrees of freedom involved).
Additionally, when dealing with stochastic sources, acoustic transfer vectors can greatly

simplify the computation of the acoustic field properties. For instance for the volume source
𝑞, one can write:

E[𝜙𝜙] = 𝒃𝑇𝜙E[𝒒𝒒𝑇 ]𝒃𝜙 , (4.6)
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where E denotes the expected value. The correlation matrix E[𝒒𝒒𝑇 ] can be either calculated
or modelled, depending on the nature of the source mechanism. From this correlation matrix
the sound field can be directly computed using the acoustic transfer vector 𝒃𝜙. This approach
has been used extensively to predict aerodynamic noise generation by turbulent flows, starting
from Tam & Auriault (1999). See Spieser (2020) for a comprehensive literature review on
this approach.
It is important to note the presence of the gradient of𝐺𝜙 in the definition of the vector 𝒂𝜙.

The gradient can be directly evaluated from the finite-element approximation of𝐺𝜙 obtained
after solving (4.1). This can be an issue if a low-quality numerical solution is used for 𝐺𝜙

since the evaluation of 𝒂𝜙 will be inaccurate.
An alternative approach is to integrate by parts the first integral in equation (2.30) to

transfer the derivative onto 𝑣𝑠. This is similar to rewriting equation (2.7) into (2.10). The
resulting expression is

𝜙(𝒙) =
∫
Γ

𝐺𝜙

𝜌0

i𝜔
D0𝑣𝑠
D𝑡
dΓ𝑦 −

∫
Ω

𝐺𝜙𝑞 dΩ𝑦 . (4.7)

This avoids having to differentiate 𝐺𝜙 which is computed numerically. However, if the
prescribed normal velocity 𝑣𝑠 is poorly represented, for instance with noisy data, computing
its derivative might introduce more numerical error. Depending on the application at hand,
one has to choose which of these two approaches is best suited.

5. Applications
The proposed propagation models, both direct and adjoint, are now applied to several 2D test
cases to verify the formulation and implementation and to illustrate their applications.

5.1. Cylinder in compressible flow
The proposed methodology is first applied to compute the sound radiated by a point
source located in the vicinity of a cylinder immersed in a steady compressible flow. The
computational domain consists of a square of side 8m represented in figure 1(a). The
cylinder is centered at 𝑥 = 𝑦 = 0 and has a radius 𝑅 = 1m. Far from the cylinder, the mean
flow is in the positive 𝑥 direction with a Mach number 𝑀∞ = 0.3, a density 𝜌∞ = 1.2 kg/m3
and a speed of sound 𝑐∞ = 340m/s. The flow field around the cylinder is computed using a
compressible homentropic potential flow solver (hence for an inviscid, non-heat-conducting
gas). The flow is then interpolated onto the acoustic mesh. The local Mach number varies
up to 0.662, as illustrated in figure 1(a). The cylinder is acoustically treated with a uniform
impedance 𝑍 = 𝜌∞𝑐∞(2−2i) and is vibrating with a surface velocity 𝒗(𝑥, 𝑦) = [cos(𝑥), 0]𝑇 .
In this example, a point source 𝛿(𝒙 − 𝒙s) is placed at 𝑥s = −1m and 𝑦s = −2m and the
observer is located at 𝑥 = 𝑦 = 2.5m.
The adjointmethods forGoldstein’s and Pierce’s equations are used to compute the acoustic

field at the observer. Numerical simulations are performed over the normalized frequency
range 1 ⩽ 𝜔𝑅/𝑐∞ ⩽ 10. The computational domain is discretized with 6-node triangular
elements whose curved edges allow to better represent the geometry of the cylinder. The
size of the finite elements ranges from ℎ = 0.05m on the cylinder surface to ℎ = 0.25m
at the outer boundary of the domain, corresponding respectively to 12.6 and 2.5 elements
per acoustic wavelength at the highest frequency of interest. This leads to approximately
6700 elements in the domain. The FEM a-priori error indicator automatically adjusts the
order of the finite element basis to the user-defined accuracy, the frequency, the mean flow
and the element size distribution, also accounting for the curvature of the mesh (Bériot &
Gabard 2019). The mesh is shown in figure 1(c) together with distribution of polynomials
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(a) (b) (c)

Figure 1: Computational domain: (a) mean Mach number, (b) mean density and (c) mesh
with FEM face order distribution for 𝜔 = 10𝑐0/𝑅.

orders obtained with a target accuracy 𝐸𝑇 = 1%. The face order 𝑝FEM varies from 2 to 5 at
𝜔 = 10𝑐∞/𝑅. At the outer boundaries, PML regions made of ten layers are automatically
extruded to absorb outgoing waves (Bériot & Modave 2021). They are stabilized using
Lorentz transformation, following the work in Marchner et al. (2021).
Figure 2 presents the results obtained for the direct and adjoint problems at 𝜔 = 10𝑐∞/𝑅

usingGoldstein’s equation. The real parts of the acoustic potential and pressure fields obtained
for the direct problem are shown in figures 2(a) and 2(b), respectively. The sound field radiated
from the source is clearly visible and is scattered by the cylinder, which also radiates sound
due to its surface vibration. Also visible is the mean flow effect on the sound waves, with
shorter waves propagating upstream and longer waves propagating downstream. Figures 2(c)
and 2(d) show the solutions 𝐺𝜙 and 𝐺 𝑝 of the adjoint problem. In these solutions, waves are
converging towards the observer location (these waves are anti-causal) and are scattered by
the cylinder. Due to the flow reversal theorem, shorter wavelengths are observed on the right
and longer wavelengths on the left, which is the opposite of the direct solutions.
The solutions of the direct problems based on Goldstein’s and Pierce’s equations are

now compared to those obtained with the tailored adjoint Green’s functions 𝐺𝜙, 𝐺 𝑝 or
𝐻𝜑 , using equations (2.30), (2.32) or (3.14). Figure 3 shows the variables 𝜙(𝒙), 𝜑(𝒙) and
𝑝(𝒙) computed at the observer location for a range of frequencies 1 ⩽ 𝜔𝑅/𝑐∞ ⩽ 10. For
Goldstein’s equation, the potential and pressure fields calculated with the adjoint approach
and equations (2.30) and (2.32) match exactly the solutions of the direct problem. The same
conclusion is obtained for Pierce’s equation. These results demonstrate the applicability of
the adjoint method to compressible non-parallel flows, in the presence of lined and vibrating
surfaces.
For this test case, the assumptions of Goldstein’s equation (homentropic and irrotational

mean flow) are all valid and this equation thus provides the reference solution. Note that the
mean flow is not exactly isothermal since the mean temperature varies slightly around the
cylinder (these variations do not exceed a few percents). As a consequence the mean density
and sound speed also vary, see figure 1(b). In this case, Pierce’s equation is approximate
but still provides results in excellent agreement with Goldstein’s equation (see figure 3(c)).
It is only at low frequency (𝜔𝑅/𝑐∞ ≃ 1) that very small discrepancies can be observed
between the two propagation equations. These discrepancies can be attributed to the small
gradients of 𝜌0 and 𝑐0 and the high-frequency assumption used in Pierce’s equation. In
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(a) potential Re(𝜙) (b) pressure Re(𝑝)

(c) function Re(𝐺𝜙) (d) function Re(𝐺 𝑝)

Figure 2: Real parts of the acoustic potential (a) and pressure (b) obtained with the direct
problem for Goldstein’s equation. Real parts of the numerical Green’s functions (c) 𝐺𝜙

and (d) 𝐺 𝑝 obtained from the corresponding adjoint problem, at 𝜔 = 10𝑐∞/𝑅. ×: source
location and +: observer position.

Section 5.3, we will illustrate the differences between these wave equations when significant
mean temperature gradients are present.

5.2. Sound source in a lined duct with flow
The second application involves a point source located in a two-dimensional straight duct
with a uniform flow and a finite lined section modelled using theMyers impedance condition.
The aim is to validate the formulation of the adjoint Myers condition for Goldstein’s equation
as well as the proposed formulations for the direct and adjoint Myers condition for Pierce’s
equation. These formulations, described in Sections 2–3, involve the neglect of contour terms
around the lined surfaces, which could not be validated in the previous test case.
The straight duct, shown in figure 4(a), has a height ℎd = 0.2m and a length 𝑟d = 0.75m.

Inside the duct, the uniform flow is such that 𝜌0 = 1.225 kg/m3, 𝑐0 = 340m/s and 𝑀0 =
𝑢0/𝑐0 = 0.5. On the duct upper wall, a uniform surface impedance 𝑍 = 𝜌0𝑐0(2 − 2i) is
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Figure 3: Real part of (a) the acoustic potential 𝜙, (b) the acoustic potential 𝜑 and (c) the
acoustic pressure computed at 𝑥 = 𝑦 = 2.5𝑅 from: ◦ Goldstein’s direct problem, × Pierce’s
direct problem, Goldstein’s adjoint problem and Pierce’s adjoint problem.
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Figure 4: (a) Computational domain with liner in gray and (b) mesh with FEM face order
distribution at 𝑓 = 5 kHz.

defined for 0.125 < 𝑥 < 0.625 m. The point source, placed at 𝑥𝑠 = 0.25m and 𝑦𝑠 = 0.1m,
is defined as 10−3𝛿(𝒙 − 𝒙𝑠). The acoustic potential and pressure fields are computed at the
observer position 𝑥 = 0.6m and 𝑦 = 0.1m.
The finite-element simulations are performed for a frequency of 𝑓 = 5 kHz and a target

accuracy of 𝐸𝑇 = 1%. The mesh of triangular elements is shown in figure 4(b) together
with the distribution of face orders. The size of the elements inside the duct varies from
ℎ = 0.0025m at the wall to ℎ = 0.025m at the center of the duct. The face order 𝑝FEM varies
between 1 and 5. In order to absorb outgoing waves, PML regions made of 10 layers are
introduced at the duct terminations.
Acoustic results obtained usingGoldstein’s equation are presented in figure 5. For the direct
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(a) potential Re(𝜙) (b) pressure Re(𝑝)

(c) function Re(𝐺𝜙) (d) function Re(𝐺 𝑝)

Figure 5: Real parts of the acoustic potential (a) and pressure field (b) obtained for
Goldstein’s equation, and real parts of the corresponding numerical Green’s functions 𝐺𝜙

(c) and 𝐺 𝑝 (d) obtained from the adjoint problem at 𝑓 = 5 kHz. ×: source location and +:
observer location. The liner is indicated in gray.

problem, the real part of the acoustic potential and pressure are given in figures 5(a) and 5(b),
respectively. For the adjoint problem, the real part of the numerical Green’s functions𝐺𝜙 and
𝐺 𝑝 are shown in figures 5(c) and 5(d). As for the previous test case, the Green’s functions
𝐺𝜙 and 𝐺 𝑝 exhibit waves converging towards the observer position and the effect of the
mean flow on the wavelength is reversed when compared to the direct problem. Using these
tailored adjoint Green’s functions together with equations (2.30) and (2.32) yields solutions
for 𝜙 and 𝑝 at the observer location in figure 5 that are identical to the solutions of the direct
problem within floating-point precision. The results obtained with Pierce’s equation are not
shown here for the sake of brevity since they are identical to those in figure 5. This is because,
with a uniform mean flow, the wave operators in (2.1) and (3.1) are equivalent since dividing
the former by 𝜌20 yields the latter.
To further verify the proposed models, they are compared to the semi-analytical mode-

matching model from Gabard (2010). The three solutions along the upper duct wall are
compared in figure 6. Again, the solutions from Goldstein’s and Pierce’s are identical.
They are also in close agreement to the mode-matching solution, even in the vicinity of
the impedance discontinuities at 𝑥 = 0.125 and 𝑥 = 0.625 where the acoustic pressure
varies rapidly. The velocity potentials 𝜙 and 𝜑 vary continuously in these regions but their
slopes change across the impedance discontinuities. This behaviour is well resolved by the
high-order finite-element method. The pressure fields shown in figure 6 are obtained by
computing 𝑝 = −𝜌0D0𝜙/D𝑡 or 𝑝 = D0𝜑/D𝑡. It is the gradient 𝒖0 ·∇ included in the material
derivative that results in rapid variations of 𝑝 near impedance discontinuities. This behaviour
is well-known and expected, see Gabard (2010) and Luneville & Mercier (2014) for more
details.
These results confirm that the formulation of the adjoint Myers condition for Goldstein’s

equation proposed in Section 2.2.2 is consistent with the standard formulation of Eversman
(2001a). This also confirms that the formulations of the direct and adjoint Myers impedance
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Figure 6: (a) Real part and (b) imaginary part of the pressure field at 𝑓 = 5 kHz along the
lined duct top wall (𝑦 = ℎd): Pierce’s equation, Goldstein’s equation and

◦ mode-matching results (reference).

conditions for Pierce’s equation proposed in Section 3 are consistent with those for the
Goldstein’s equation.

5.3. Propagation in sheared non-isothermal flows
In the results presented above, Pierce’s and Goldstein’s wave equations yield almost identical
results. This is not always the case, in particular when the mean flow includes strong
temperature gradients. To illustrate this, two additional test cases are considered, namely
the sound radiated by a source in a hot jet and the sound produced by a point source in
a duct with a hot sheared flow. The solutions from the direct problems are also compared
to reference solutions obtained with the linearised Euler equations solved using the same
high-order finite element method (Hamiche et al. 2019). The aim is to quantitatively assess
the impact of the simplifications involved in Pierce’s and Goldstein’s operators when mean
temperature gradients are present or when the mean flow is not homentropic.
Adjoint problems have also been computed and lead to the same results as the direct

problems. For the sake of brevity, adjoint results have not been included in this section.

5.3.1. Free-field propagation
The case of a localised heat source radiating in a hot jet flow corresponds to the benchmark
problem used in Spieser (2020), except that two-dimensional calculations are performed
instead of axi-symmetric ones. The base flow is based on the fourth CAA workshop, see
section "radiation and refraction of sound waves through a two-dimensional shear layer" of
Dahl (2004). The mean flow is parallel along the 𝑥 axis with a velocity profile defined as

𝑢0(𝑦) = 𝑢j exp
(
− 𝑦2

2𝜎2

)
, (5.1)

where 𝜎 = 1.1018m, 𝑢j = 𝑀j𝑐j, 𝑐j =
√︁
𝛾𝑅𝑇j, 𝑇j = 600K, 𝛾 = 1.4 and 𝑅 = 287m2s−2K−1.

The mean density is defined using the Crocco–Busemann law:
𝜌j

𝜌0(𝑦)
=
𝑇∞
𝑇j

−
(
𝑇∞
𝑇j

− 1
)
𝑢0(𝑦)
𝑢j

+ 𝛾 − 1
2

𝑀2j
𝑢0(𝑦)
𝑢j

(
1 − 𝑢0(𝑦)

𝑢j

)
, (5.2)

where 𝑇∞ = 300K, 𝜌j =
√︃
𝛾𝑝0/𝑐2j with 𝑝0 = 103330 Pa. The jet flow Mach number is set to

𝑀j = 0.9. Note that this mean flow is isentropic but not homentropic. Following Dahl (2004),
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(a) Goldstein’s equation (b) Pierce’s equation (c) LEE

Figure 7: Real part of the pressure field for the hot jet problem at 𝑆𝑡 = 0.5 obtained with
(a) Goldstein’s equation, (b) Pierce’s equation and (c) the LEE. Levels between −10−5 Pa

and 10−5 Pa from blue to yellow.

the sound source is defined as a source term in the energy equation of the LEE written for
the variables [𝜌′, 𝜌0𝒖′, 𝑝′]𝑇 . The source distribution is

𝑞𝑝 (𝑥, 𝑦) = 𝜎𝑠

√
𝑒 exp

(
−𝑥2 + 𝑦2

2𝜎2𝑠

)
, (5.3)

with 𝜎𝑠 = 0.136𝜎. Corresponding source terms are derived for Goldstein’s and Pierce’s
equations.
The computational domain extends from −5𝜎 to 18𝜎 in the 𝑥 direction and from −3𝜎 to

9𝜎 in the 𝑦 direction, with the jet centerline at 𝑦 = 0. At the external boundaries, a PML
region of thickness 2𝜎 and made of five layers is used to absorb outgoing waves. Simulations
are performed for Strouhal numbers 𝑆𝑡 = 2𝜎 𝑓 /𝑢j in the range 0.5 ⩽ 𝑆𝑡 ⩽ 3.
A triangular mesh is used for the finite-element solution. The element size is ℎ = 𝜎/30

along the jet centerline to discretise the point source and the jet shear layers. It is progressively
increased to reach ℎ = 0.6𝜎 at the external boundaries of the domain. For the FEM
simulations, the target error for the a priori error estimator is set to 1%, resulting in FEM
polynomial orders varying between 1 and 8.
The real part of the pressure field computed with Goldstein’s, Pierce’s and the LEE

operators at 𝑆t = 0.5 is shown in figure 7. The real part of the pressure field obtained along
the line 𝑦 = 6𝜎 is shown in figure 8(a). Some differences can be observed between the three
models, especially downstream of the source. Pierce’s equation follows more closely the
LEE compared to Goldstein’s equation. This is confirmed by computing a relative error with
respect to the LEE solution as a function of frequency from the pressure field at 𝑦 = 6𝜎.
Results are presented in figure 8(b). Results from Goldstein’s equation are consistently
less accurate than with Pierce’s equation. Also significant in figure 8(b) is the decrease of
the relative error as the frequency increases, which is consistent with the high-frequency
analysis used by Pierce (1990). This is explained by the fact that the assumptions needed for
Goldstein’s equation are not satisfied: the mean flow is neither homentropic nor irrotational.
Pierce’s equation do not need these assumptions, but relies instead on a high-frequency
approximation.
Table 1 compares the computational costs of the different wave operators in terms of

number of degrees of freedom (DoFs), memory footprint and solving time. For a given mesh
and accuracy, the use of the LEE leads to an increase by a factor 7 in the execution time and
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Figure 8: (a) Real part of the acoustic pressure at 𝑦 = 6𝜎 for 𝑆𝑡 = 0.5 and (b)
corresponding relative error 𝜖 (with LEE as reference) for an increasing Strouhal number:

LEE, Pierce’s equation and Goldstein’s equation. Error levels for an
isothermal jet with 𝑇0 = 600K are also reported for × Pierce’s equation and ◦ Goldstein’s

equation.

Method Number of DoFs Factorization Memory (Mb) Solving time (sec)

Goldstein 270 300 723 4
Pierce 270 300 723 4
LEE 1 081 100 10 900 28

Table 1: Comparison of the computational costs of the different wave operators as
reported by the MUMPS linear solver (Amestoy et al. 2001), for the non-isothermal jet

flow problem at 𝑆𝑡 = 3.

by a factor 15 in the memory requirements of the linear solver when compared to Pierce’s or
Goldstein’s equations. This is consistent with the comparison for 3D calculations reported
by Hamiche et al. (2019).
For completeness, figure 8(b) also includes results for the same case but with a uniform

temperature 𝑇0 = 600K. In this case, 𝜌0 and 𝑐0 are uniform, hence Goldstein’s and Pierce’s
equations are equivalent, which is confirmed by figure 8(b). The accuracy of Goldstein’s
equation is significantly improved compared to the non-isothermal-jet case because the
mean flow is now homentropic. The remaining error compared to the LEE is due to the jet
flow which contradicts the irrotational flow assumption used for Goldstein’s equation.

5.3.2. In-duct propagation
In this test case, a point mass source is located in a duct containing a hot sheared flow. The
geometry of the duct and the source are identical to those of the duct problem presented
in section 5.2, except that no liner is considered. Inside the duct, a mean velocity profile is
defined as:

𝑢0(𝑦) = 𝑢j

(
1 −

����1 − 2𝑦ℎd
����𝑛) , (5.4)
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(a) Goldstein’s equation (b) Pierce’s equation

(c) LEE

Figure 9: Real part of pressure in the duct with sheared flow at 𝑓 = 5 kHz. (a) Goldstein’s
equation, (b) Pierce’s equation and (c) LEE. Levels between −7 Pa and +7 Pa from blue to

yellow.

with 𝑛 = 3, 𝑇j = 600K, 𝛾 = 1.4 and 𝑅 = 287m2s−2K−1. The flow Mach number along the
duct centerline 𝑀j = 0.5. The mean density is defined from the Crocco–Busemann law (5.2)
with 𝑇∞ = 300K, and 𝑝0 = 103330 Pa.
The direct problems based on either Pierce’s and Goldstein’s operator are solved with

the high-order FEM method and the results are compared to the LEE solutions. All the
numerical simulations are carried out with 𝑓 = 5 kHz using a mesh similar to that used in
section 5.2. The a priori accuracy target is 𝐸𝑇 = 1%, resulting in polynomial orders 𝑝FEM
varying between 1 and 4.
The acoustic pressure in the duct computed from the three linearised operators is shown

in figure 9. While the overall pressure distributions are similar between the three solutions,
the details of the solution obtained with Pierce’s equation follows more closely the reference
solution.
The real and imaginary parts of the acoustic pressure along the duct top wall are shown

in figure 10 for the three propagation operators. The best agreement with the LEE reference
solution is clearly obtained with Pierce’s equation. The relative error with respect to the LEE
solution is of 26.1% using Pierce’s equation and of 52.3% using Goldstein’s equation. The
variation of the relative error from the LEE solution is shown in figure 11 for a range of
Helmholtz numbers 𝜔ℎd/𝑐j varying between 5 and 40. The same trend is observed where
the Pierce’s equation is consistently more accurate than Goldstein’s equation. These results
indicate that Pierce’s operator is more accurate when modelling acoustic propagation in
regions with mean temperature gradients. Note that the peaks of error seen in figure 11 are
due to the cut-off frequencies of the duct modes. Whenever the frequency of interest is close
to the cut-off frequency of a duct mode, the models are very sensitive to any numerical
error and large discrepancies can be observed between different propagation models. This is
discussed in more detail in Section V.B. in Gabard (2014).

6. Summary and conclusions
In this paper we have formulated a number of direct and adjoint problems for sound
propagation with flow. The scalar wave equations from Goldstein and Pierce have been
considered in a general setting, i.e. with a compressible mean flow, far-field radiation,
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Figure 10: (a) Real part and (b) imaginary part of the pressure field at 𝑓 = 5 kHz along the
duct top wall (𝑦 = ℎd): LEE, Pierce’s equation and Goldstein’s

equation.
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Figure 11: Relative error with respect to the LEE solution for the acoustic pressure along
the duct top wall (𝑦 = ℎd): Pierce’s equation and Goldstein’s equation.

volume sources and lined and/or vibrating surfaces. The adjoint problems have been devised
to provide tailored Green’s functions that facilitate the computation of the direct problem
solution. While the two propagation operators considered here are self-adjoint, the various
boundary conditions are not self-adjoint. In particular the adjointMyers impedance condition
has been formulated for each propagation operator. This has been done in a manner consistent
with the formulation proposed by Eversman (2001a) for the direct Myers condition for
Goldstein’s equation. The inclusion in the variational formulations of the far-field radiation
condition with flow has also been revisited. By reversing the flow, the adjoint problems for
the tailored Green’s functions can be recast in forms that are readily solved using existing
solvers for the direct problems. Using a series of test cases, the solutions obtained through
the use of tailored adjoint Green’s functions were found to be consistent with the direct
problems, thus validating the formulation of the adjoint problems.
The differences between the two propagation operators have been highlighted in cases

where the mean flow exhibits temperature gradients. In such cases, Pierce’s equation was
found to bemore accurate and should be preferredwhenmodelling sound propagation through
non-isothermal flows. As expected, the accuracy of the two wave equations improves when
the frequency increases.
The proposed adjoint problems and the associated tailored Green’s functions can be useful

in a wide range of applications, such as stochastic sound sources (e.g. aerodynamic noise
sources) and source localization problems. In addition, the systematic analysis presented
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could also be applied to other propagation operators, such as the Acoustic Perturbation
Equations (APE), or to other situations such as the presence of porous materials.
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Appendix A. 2D radiation condition
To derive the radiation condition in 2D for Goldstein’s equation, we apply the same reasoning
as for the 3D condition outlined in Section 2.1.4. The sound field radiated in a uniform mean
flow by a generic source term 𝑞 on the right-hand side of (2.1) is given by (2.12). In two
dimensions, the free-field Green’s function 𝐺 (𝒙 |𝒚) is defined as

𝐺 (𝒙 |𝒚) = i
4𝛽
exp

{
i𝑘
𝛽2

(𝒙 − 𝒚) · 𝒖0
𝑐0

}
H(2)
0

(
𝑘𝑟

𝛽2

)
, (A 1)

whereH(2)
0 is the zeroth-order Hankel function of the second kind. After some developments,

the following result is obtained:

𝒖0 · 𝒏
𝑐20

D0𝐺 (𝒙 |𝒚)
D𝑡

− 𝜕𝐺 (𝒙 |𝒚)
𝜕𝑛

= 𝑘
𝑟

𝑟

H(2)
1 (𝑘𝑟/𝛽2)

H(2)
0 (𝑘𝑟/𝛽2)

𝐺 (𝒙 |𝒚) , (A 2)

where H(2)
1 is the first-order Hankel function of the second kind. The derivatives on the

left-hand side of equation (A 2) operate on the 𝒙 coordinate. This result is exact and valid
for any value of 𝑟. When the observer is in the geometric far field (i.e. ∥𝒙∥ ≫ ∥𝒚∥), the
distance 𝑟 can be approximated by 𝑟 . From (2.12) and (A 2), the velocity potential satisfies
the following radiation condition in the geometric far field:

𝒖0 · 𝒙
𝑐20𝑟

D0𝜙
D𝑡

− 𝜕𝜙

𝜕𝑟
= i𝑘𝛼2D𝜙 + O

(
1

𝑟5/2

)
, 𝛼2D =

𝑟

𝑟

H(2)
1 (𝑘𝑟/𝛽2)

iH(2)
0 (𝑘𝑟/𝛽2)

, (A 3)

when 𝑟 → +∞. The corresponding boundary integral in the variational formulation (2.3) is
written

𝐼Γ∞ =

∫
Γ∞

i𝑘𝛼2D𝜌0𝜓𝜙 dΓ . (A 4)

It is interesting to note that when 𝑘𝑟 is large it is possible to show that 𝛼2D ≃ (𝑟/𝑟) [1 +
𝛽2/(2i𝑘𝑟)] (for this purpose use equation 10.17.6 in DLMF (2022)), which is consistent
with the 2D far-field boundary conditions derived by Bayliss & Turkel (1982).
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