VIBROACOUSTIQUE DES STRUCTURES PLANES

3 - ANALYSE ET REPRESENTATION DANS LE CAS D'UNE PLAQUE INFINIE

- 4 RAYONNEMENT D'UNE PLAQUE RECTANGULAIRE
- **5 PUISSANCE ACOUSTIQUE RAYONNEE**

Transparence acoustique: CAS D'UNE PLAQUE INFINIE

Rayonnement acoustique
 Transparence acoustique

<u>Milieu 1</u> : ondes acoustiques

$$\nabla^2 p_1(x, y, z) + k_1^2 p_1(x, y, z) = 0$$

Interface milieu 1 / plaque : continuité des vitesses acoustiques et vibratoires

$$\frac{\partial p_1(x, y, z)}{\partial z}\Big|_{z=0} = \omega^2 \rho_1 w(x, y)$$

<u>Plaque</u> : déplacement du aux ondes de flexion

$$D \nabla^4 w(x, y) - \omega^2 \rho h w(x, y) = p_1(x, y, 0) - p_2(x, y, 0)$$

Interface milieu 2 / plaque : continuité des vitesses acoustiques et vibratoires

$$\frac{\partial p_2(x, y, z)}{\partial z} \bigg|_{z=0} = \omega^2 \rho_2 w(x, y)$$

<u>Milieu 2</u> : ondes acoustiques

$$\nabla^2 p_2(x, y, z) + k_2^2 p_2(x, y, z) = 0$$

<u>Milieu 1</u> : ondes acoustiques

$$\nabla^2 p_1(x, y, z) + k_1^2 p_1(x, y, z) = 0$$

Onde plane incidente : angles θ et ϕ

$$p_{\rm inc}(x, y, z) = P e^{-jkx\sin\theta\sin\phi - jky\sin\theta\cos\phi - jkz\cos\theta}, \qquad k = \frac{\omega}{c}$$

$$= p(x, y) e^{-jkz\cos\theta}$$

Ondes planes incidente + réfléchie

$$p_1(x, y, z) = p(x, y) \left[e^{-jkz\cos\theta} + R e^{jkz\cos\theta} \right]$$

Continuité des vitesses $\Rightarrow p_2(x, y, z) = p(x, y)T e^{-jk_z z}$

$$k_{z} = \sqrt{k_{t}^{2} - (k_{x}^{2} + k_{y}^{2})} = \sqrt{k_{t}^{2} - k^{2} \sin^{2} \theta}$$

$$k_t = \frac{\omega}{c_t}$$

$$k\sin\theta = k_t\sin\theta_t$$
 $\theta_t = \arcsin\frac{k\sin\theta}{k_k} = \arcsin\frac{c_t\sin\theta}{c}$

$$k\sin\theta = k_t\sin\theta_t$$
 $\theta_t = \arcsin\frac{k\sin\theta}{k_k} = \arcsin\frac{c_t\sin\theta}{c}$

 $k_t < k \quad (c_t > c)$

Onde transmise

Propagative $(k_t > k \sin \theta)$ $0 \leq \theta_t \leq \frac{\pi}{2}$ k_{t} **Evanescente** $(k_t < k \sin \theta)$ $\theta_{LIM} = \arcsin \frac{k_t}{k} = \arcsin \frac{c}{c_t}$ $k\sin\theta = k_t\sin\theta_t$ $\theta_t = \arcsin\frac{k\sin\theta}{k_{\nu}} = \arcsin\frac{c_t\sin\theta}{c}$

VIBROACOUSTIQUE DES STRUCTURES PLANES

3 - ANALYSE ET REPRESENTATION DANS LE CAS D'UNE PLAQUE INFINIE

4 - RAYONNEMENT D'UNE PLAQUE RECTANGULAIRE

5 - PUISSANCE ACOUSTIQUE RAYONNEE

CAS D'UNE PLAQUE FINIE

Rayonnement acoustique

Transparence acoustique

PLAQUE FINIE

<u>Milieu 1</u> : ondes acoustiques

$$\nabla^2 p_1(x, y, z) + k_1^2 p_1(x, y, z) = 0$$

Interface milieu 1 / plaque : continuité des vitesses acoustiques et vibratoires

$$\frac{\partial p_1(x, y, z)}{\partial z} \bigg|_{z=0} = \begin{cases} 0 & \text{ailleurs} \\ \omega^2 \rho_1 w(x, y) & \text{sur } S \end{cases}$$

Plaque : déplacement du aux ondes de flexion

 $D \nabla^4 w(x, y) - \omega^2 \rho h w(x, y) = F(x, y) + p_1(x, y, 0) - p_2(x, y, 0) \quad \text{CL}\{w(x, y)\} = 0$

Interface milieu 2 / plaque : continuité des vitesses acoustiques et vibratoires

$$\frac{\partial p_2(x, y, z)}{\partial z} \bigg|_{z=0} = \begin{cases} 0 & \text{ailleurs} \\ \omega^2 \rho_2 w(x, y) & \text{sur } S \end{cases}$$

<u>Milieu 2</u> : ondes acoustiques

$$\nabla^2 p_2(x, y, z) + k_2^2 p_2(x, y, z) = 0$$

Transformée de Fourier Spatiale

Transformée de Fourier Spatiale 2D (TFS)

$$W(k_{x},k_{y}) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} w(x,y) e^{j(k_{x}x+k_{y}y)} dx dy \qquad \text{analyse}$$
$$w(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} W(k_{x},k_{y}) e^{-j(k_{x}x+k_{y}y)} \frac{dk_{x}}{2\pi} \frac{dk_{y}}{2\pi}$$
synthèse

La TFS 2D permet de généraliser les résultats de la plaque infinie à une structure plane quelconque :

Pour une plaque infinie une composante de flexion est représentée par un point sur le spectre des nombres d'onde

Pour une plaque finie les multiples réflexions sur les bords conduiront à de multiples points sur le spectre des nombres d'onde

Exemple

Transformée de Fourier Spatiale 2D (TFS)

Exemple

Transformée de Fourier Spatiale 2D (TFS)

Module Vitesse Filtrée F=3500 Hz

Pour simplifier $p_2 = p$, $c_2 = c$, $k_2 = k$ et $\rho_0 = \rho_2$

Transformée de Fourier Spatiale 2D (TFS) de la pression

$$P(k_{x},k_{y},z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p(x,y,z) e^{j(k_{x}x+k_{y}y)} dx dy \qquad \text{analyse}$$
$$p(x,y,z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} P(k_{x},k_{y},z) e^{-j(k_{x}x+k_{y}y)} \frac{dk_{x}}{2\pi} \frac{dk_{y}}{2\pi} \qquad \text{synthèse}$$

Transformée de Fourier de l'équation de Helmholtz

$$TFS\left\{\nabla^{2} p(x, y, z) + k^{2} p(x, y, z)\right\} = TFS\left\{\nabla^{2} p(x, y, z)\right\} + k^{2} P(k_{x}, k_{y}, z) = 0$$

Dérivée de la pression $p(x, y, z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} P(k_x, k_y, z) e^{-j(k_x x + k_y y)} \frac{dk_x}{2\pi} \frac{dk_y}{2\pi}$ $\frac{\partial p(x, y, z)}{\partial x} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} P(k_x, k_y, z) \frac{\partial}{\partial x} e^{-j(k_x x + k_y y)} \frac{dk_x}{2\pi} \frac{dk_y}{2\pi}$ $= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} -jk_x P(k_x, k_y, z) e^{-j(k_x x + k_y y)} \frac{dk_x}{2\pi} \frac{dk_y}{2\pi}$ **donc**

$$TFS\left\{\frac{\partial p(x,y,z)}{\partial x}\right\} = -jk_x P(k_x,k_y,z) \quad TFS\left\{\frac{\partial^n p(x,y,z)}{\partial x^n}\right\} = (-jk_x)^n P(k_x,k_y,z)$$

$$TFS\left\{\frac{\partial^{m+n} p(x, y, z)}{\partial x^m \partial y^m}\right\} = (-jk_x)^m (-jk_y)^n P(k_x, k_y, z)$$

$$TFS\left\{\nabla^2 p(x, y, z)\right\} = TFS\left\{\frac{\partial^2 p(x, y, z)}{\partial x^2} + \frac{\partial^2 p(x, y, z)}{\partial y^2}\right\} = -\left(k_x^2 + k_y^2\right)P(k_x, k_y, z)$$

Transformée de Fourier de l'équation de Helmholtz

$$TFS \{ \nabla^2 p(x, y, z) \} + k^2 P(k_x, k_y, z) = 0$$

avec $TFS \{ \nabla^2 p(x, y, z) \} = -(k_x^2 + k_y^2) P(k_x, k_y, z)$
devient

$$\frac{\partial^2 P(k_x, k_y, z)}{\partial z^2} + (k^2 - k_x^2 - k_y^2) P(k_x, k_y, z) = 0$$

avec pour solution $P(k_x, k_y, z) = A(k_x, k_y) e^{-jk_z z} + B(k_x, k_y) e^{jk_z z}$

Éliminé par la condition de Sommerfeld

relation de continuité

$$\frac{\partial P(k_x, k_y, z)}{\partial z} \bigg|_{z=0} = \omega^2 \rho_0 W(k_x, k_y)$$
$$W(k_x, k_y) = \iint_S w(x, y) e^{j(k_x x + k_y y)} dx dy$$

Pression rayonnée dans le domaine des nombres d'onde

$$P(k_x, k_y, z) = j\omega \frac{\rho_0 c k}{k_z} e^{-jk_z z} W(k_x, k_y)$$

et dans l'espace après TFS inverse

$$p(x, y, z) = j\omega \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left[\frac{\rho_0 ck}{\sqrt{k^2 - k_x^2 - k_y^2}} e^{-j\sqrt{k^2 - k_x^2 - k_y^2}} z W(k_x, k_y) \right] e^{-j(k_x x + k_y y)} \frac{dk_x}{2\pi} \frac{dk_y}{2\pi}$$

Solution pour la pression en champ lointain

coordonnées sphériques $x = R \sin \theta \cos \phi$ $y = R \sin \theta \sin \phi$ $z = R \cos \theta$ $p(R, \theta, \phi) = j\omega \rho_0 \int_{0}^{+\infty} \int_{0}^{+\infty} \frac{e^{-jR(k_x \sin \theta \cos \phi + k_y \sin \theta \sin \phi + k_z \cos \theta)}}{k_z} W(k_x, k_y) \frac{dk_x}{2\pi} \frac{dk_y}{2\pi}$

Quand kR >> 1 **méthode de la phase stationnaire** $p(R, \theta, \phi) \approx -\omega^2 \rho_0 \frac{e^{-jkR}}{R} W(k \sin \theta \cos \phi, k \sin \theta \sin \phi)$ $k_x = k \sin \theta \cos \phi$ et $k_y = k \sin \theta \sin \phi$

Utilisation de la représentation modale

Conditions aux limites : 4 bords simplement supportés

Solution libre

$$w(x, y, t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left[A_{mn} \sin \omega_{mn} t + B_{mn} \cos \omega_{mn} t \right] \phi_{mn}(x, y)$$

Pulsation propres

$$\omega_{mn} = \pi^2 \left[\left(\frac{m}{L_x} \right)^2 + \left(\frac{n}{L_y} \right)^2 \right] \sqrt{\frac{D}{\rho h}}$$

Déformée modale

$$\phi_{mn}(x, y) = \sin \frac{m\pi x}{L_x} \sin \frac{n\pi y}{L_y}$$

Plaque rectangulaire SS

d'après Dan Russell, www. kettering.edu/~drussell/

 $\phi_{22}(x,y)$

Excitation forcée des plaques

Equation du déplacement

$$w(x, y, \omega) = \sum_{m} \sum_{n} \frac{F_{mn} e^{j\omega t}}{M_{mn} [\omega_{mn}^{2} - \omega^{2} + j2\omega\omega_{mn}\zeta_{mn}]} \phi_{mn}(x, y)$$

masse modale généralisée

force modale généralisée

Pression pariétale

$$p(x, y, 0) = j\omega \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{\rho_0 c k W(k_x, k_y)}{\sqrt{k^2 - k_x^2 - k_y^2}} e^{-j(k_x x + k_y y)} \frac{dk_x}{2\pi} \frac{dk_y}{2\pi}$$

Utilisation de la base modale

$$w(x, y) = \sum_{m,n}^{\infty} a_{mn}(\omega)\phi_{mn}(x, y)$$

$$\iint_{S} \phi_{mn}(x, y) \phi_{kl}(x, y) dx dy = \begin{cases} N_{mn} & \text{quand } (k, l) = (m, n) \\ 0 & \text{quand } (k, l) \neq (m, n) \end{cases}$$

Objectif : exprimer le déplacement dans la base modale pour la pression pariétale $W(k_x,k_y) = \sum_{mn}^{\infty} a_{mn}(\omega) \Phi_{mn}(k_x,k_y)$

m.n

Pression pariétale s'écrit de deux façons différentes

... en exprimant la vitesse sur la basse modale

$$p(x, y, 0) = j\omega \rho_0 c k \sum_{m,n}^{\infty} a_{mn}(\omega) \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{\Phi_{mn}(k_x, k_y) e^{-j(k_x + k_y y)}}{\sqrt{k^2 - k_x^2 - k_y^2}} \frac{dk_x}{2\pi} \frac{dk_y}{2\pi}$$

... en recherchant une décomposition de la pression pariétale sur la base des fonctions orthogonales $\phi_{pq}(x, y)$

$$p(x, y, 0) = \sum_{k,l}^{\infty} b_{kl} \phi_{kl}(x, y)$$

En multipliant chaque terme par $\phi_{pq}(x, y)$ et en utilisant la relation d'orthogonalité

$$\int_{-\infty-\infty}^{\infty}\int_{-\infty-\infty}^{\infty}p(x,y,0)\phi_{pq}(x,y)dx\,dy = \sum_{k,l}^{\infty}b_{kl}\int_{-\infty-\infty}^{\infty}\int_{-\infty-\infty}^{\infty}\phi_{kl}(x,y)\phi_{pq}(x,y)dx\,dy = b_{pq}N_{pq}$$

L'utilisation de la seconde expression pour la pression conduit aux coefficients $b_{pq} = \frac{1}{N_{pq}} \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} p(x, y, 0) \phi_{pq}(x, y) dx dy$

$$b_{pq} = \frac{j\omega\rho_{0}c\,k}{N_{pq}}\sum_{m,n}^{\infty}a_{mn}(\omega)\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}\frac{\Phi_{mn}(k_{x},k_{y})}{\sqrt{k^{2}-k_{x}^{2}-k_{y}^{2}}}\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}\phi_{pq}(x,y)e^{-j(k_{x}x+k_{y}y)}\,dx\,dy\,\frac{dk_{x}}{2\pi}\,\frac{dk_{y}}{2\pi}$$

$$\Phi_{pq}(-k_{x},-k_{y})$$

La pression pariétale peut s'écrire sous la forme suivante

$$b_{pq} = j\omega \sum_{m,n}^{\infty} a_{mn}(\omega) Z_{mnpq}(\omega)$$

avec l'impédance de rayonnement

$$Z_{mnpq}(\omega) = \frac{\rho_0 c}{N_{pq}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{k}{\sqrt{k^2 - k_x^2 - k_y^2}} \Phi_{mn}(k_x, k_y) \Phi_{pq}(-k_x, -k_y) \frac{dk_x}{2\pi} \frac{dk_y}{2\pi}$$

Pression pariétale prend la forme

$$p(x, y, 0) = \sum_{p,q}^{\infty} b_{pq} \phi_{pq}(x, y) = j\omega \sum_{p,q}^{\infty} \sum_{m,n}^{\infty} a_{mn}(\omega) Z_{mnpq}(\omega) \phi_{pq}(x, y)$$

Impédance de rayonnement

Quantité complexe
$$Z_{mnpq}(\omega) = R_{mnpq}(\omega) + j I_{mnpq}(\omega)$$

 les termes directs sont positifs avec une partie réelle qui tend en hautes fréquences vers l'impédance caractéristique

• les termes croisés oscillent autour de zéro

d'après Sandman 1975

Equation dynamique (pression dans le demi espace z>0)

 $D \nabla^4 w(x, y) - \omega^2 \rho h w(x, y) = F(x, y) - \rho(x, y, 0)$

$$D\sum_{m,n}^{\infty} a_{mn}(\omega) \nabla^{4} \phi_{mn}(x, y) - \omega^{2} \rho h \sum_{m,n}^{\infty} a_{mn}(\omega) \phi_{mn}(x, y)$$
$$= F(x, y) - \sum_{k,l}^{\infty} \sum_{p,q}^{\infty} j \omega a_{kl}(\omega) Z_{klpq}(\omega) \phi_{pq}(x, y)$$

Les déformées modales satisfont les conditions aux limites et vérifient l'équation homogène

$$D\nabla^4 \phi_{mn}(x, y) - \omega_{mn}^2 \rho h \phi_{mn}(x, y) = 0$$

Pulsation propre du mode (m,n)

Equation dynamique (pression dans le demi espace z>0)

$$D\sum_{m,n}^{\infty} a_{mn}(\omega) \nabla^{4} \phi_{mn}(x, y) - \omega^{2} \rho h \sum_{m,n}^{\infty} a_{mn}(\omega) \phi_{mn}(x, y)$$
$$= F(x, y) - \sum_{k,l}^{\infty} \sum_{p,q}^{\infty} j \omega a_{kl}(\omega) Z_{klpq}(\omega) \phi_{pq}(x, y)$$

module de Young complexe avec un facteur de perte η $\underline{\omega}_{mn}^2 = \omega_{mn}^2 (1+j\eta)$ et $\underline{D} \nabla^4 \phi_{mn}(x,y) = \omega_{mn}^2 (1+j\eta) \rho h \phi_{mn}(x,y)$

$$\rho h \sum_{m,n}^{\infty} a_{mn} (\omega) \left[\omega_{mn}^{2} (1+j\eta) - \omega^{2} \right] \phi_{mn} (x, y)$$
$$= F(x, y) - j\omega \sum_{l,k}^{\infty} \sum_{p,q}^{\infty} a_{kl} (\omega) Z_{lkpq} (\omega) \phi_{pq} (x, y)$$

En réalisant l'opération $\iint_{s} \phi_{rs}(x, y) \{ \mathbf{Eq} \} dx dy$

orthogonalité des déplacements modaux

$$\rho h N_{rs} a_{mn}(\omega) \left[\omega_{rs}^2 (1+j\eta) - \omega^2 \right] = F_{rs}(x,y) - j\omega \sum_{m,n}^{\infty} a_{mn}(\omega) Z_{mnrs}(\omega) N_{rs}$$

avec la force modale généralisée appliquée au mode (r,s) $F_{rs} = -j\omega \iint_{S} F(x, y) \phi_{rs}(x, y) \, dx \, dy$

$$\sum_{m,n}^{\infty} A_{mnrs} a_{mn} (\omega) = \frac{F_{rs}}{N_{rs}}$$

 $A_{mnrs} = \rho h \left[\omega_{rs}^2 - \omega^2 + j \eta \omega_{rs}^2 \right] \delta_{mr} \delta_{ns} + j \omega Z_{mnrs}(\omega)$

L'expression

$$\sum_{m,n}^{\infty} A_{mnrs} a_{mn} (\omega) = \frac{F_{rs}}{N_{rs}}$$

Peut se mettre sous forme matricielle en utilisant une base modale tronquée

indices
$$i \Rightarrow \text{modes } (r,s)$$

indices $j \Rightarrow \text{modes } (m,n)$
 $A_{ij} = A_{rsmn}$
 $A_{j} = a_{mn}(\omega)$
 $f_{i} = \frac{F_{rs}}{N_{rs}}$
 $A_{mnrs} = \rho h [\omega_{rs}^{2} - \omega^{2} + j\eta \omega_{rs}^{2}] \delta_{mr} \delta_{ns} + j\omega Z_{mnrs}(\omega)$
éléments diagonaux
 $\mathbf{A} \mathbf{a} = \mathbf{f}$

Détermination des coefficients $a_{mn}(\omega)$ en inversant la matrice associée à la base modale tronquée $\mathbf{a} = \mathbf{A}^{-1} \mathbf{f}$

$$w(x, y) = \sum_{m,n}^{N} a_{mn}(\omega) \phi_{mn}(x, y)$$

Pour les fluides légers (air), les termes non diagonaux peuvent être négligés

$$w(x, y) = \sum_{m,n}^{N} \frac{F_{mn}}{N_{mn} A_{mnmn}} \phi_{mn}(x, y)$$

VIBROACOUSTIQUE DES STRUCTURES PLANES

3 - ANALYSE ET REPRESENTATION DANS LE CAS D'UNE PLAQUE INFINIE

- 4 RAYONNEMENT D'UNE PLAQUE RECTANGULAIRE
- **5 PUISSANCE ACOUSTIQUE RAYONNEE**

PUISSANCE ACOUSTIQUE RAYONNEE

La puissance acoustique

$$\Pi = \int_{S} \mathbf{I} \cdot \hat{\mathbf{n}} \, dS = \frac{1}{2} \int_{S} \operatorname{Re}\left\{p \, u_n^*\right\} dS = \frac{\omega^2}{2} \int_{S} \operatorname{Re}\left\{Z_r\right\} |w|^2 \, dS$$

factour de rayonnement

$$\sigma = \frac{\int_{S} \operatorname{Re}\{Z_{r}/\rho_{0}c\} |w|^{2} dS}{\int_{S} |w|^{2} dS}$$

$$\sigma = \frac{\Pi}{\frac{\rho_{0}c \omega^{2}}{2} \int_{S} |w|^{2} dS}$$

Essentiellement deux approches :

 calculer la pression pariétale en utilisant l'impédance modale de rayonnement (méthode du champ proche)

calculer la pression par l'intégrale de Rayleigh en champ lointain

Puissance rayonnée par une plaque finie méthode du *champ lointain*

Intensité radiale sur un hémisphère de rayon infini

$$I_r(R,\theta,\phi) \approx \frac{\left|p(R,\theta,\phi)\right|^2}{2\rho_0 c}$$

conduit à la puissance acoustique rayonnée

Inconvénient: calcul long avec les expressions analytiques de

$$W(k_x,k_y) = \sum_{m,n}^{\infty} a_{mn}(\omega) \Phi_{mn}(k_x,k_y)$$

Autres solutions : calcul purement numérique en réalisant la transformée de Fourier du champ vibratoire (Williams)

Puissance rayonnée par une plaque finie méthode du champ proche

Milieu 2
$$\Pi = \frac{1}{2} \iint_{s} \operatorname{Re} \{ p(x, y, 0) u_{z}^{*}(x, y, 0) \} dx dy$$

$$\Pi = \frac{\omega^2}{2} \iint_{s} \operatorname{Re} \left\{ \sum_{m,n}^{\infty} \sum_{p,q}^{\infty} a_{mn}(\omega) Z_{mnpq}(\omega) \phi_{pq}(x,y) \sum_{r,s}^{\infty} a_{rs}^*(\omega) \phi_{rs}(x,y) \right\} dx dy$$
$$= \frac{\omega^2}{2} \sum_{m,n}^{\infty} \sum_{p,q}^{\infty} \sum_{r,s}^{\infty} \operatorname{Re} \left\{ a_{mn}(\omega) Z_{mnpq}(\omega) a_{rs}^*(\omega) \right\} \iint_{s} \phi_{pq}(x,y) \phi_{rs}(x,y) dx dy$$
Relation d'orthogonalité $(r,s) = (p,q) \implies \iint_{s} \phi_{pq}^2(x,y) dx dy = N_{pq}$

$$\Pi = \frac{\omega^2}{2} \sum_{m,n}^{\infty} \sum_{p,q}^{\infty} \operatorname{Re} \left\{ a_{mn}(\omega) Z_{mnpq}(\omega) a_{pq}^*(\omega) \right\} N_{pq}$$

Puissance rayonnée par une plaque finie

fluide léger : seuls les termes diagonaux de $Z_{mnpq}(\omega)$ sont conservés

$$\Pi = \frac{\omega^2}{2} \sum_{m,n}^{\infty} |a_{mn}(\omega)|^2 \operatorname{Re}\{Z_{mnmn}(\omega)\} N_{mn}$$

Facteur de rayonnement

Facteur de rayonnement modal

Wallace (1972) obtient une expression du facteur de rayonnement pour les modes (p,q) à partir d'une expression analytique de la pression en champ lointain

$$p(r,\theta,\phi) = \frac{-\omega^2 \rho_0 a_{pq}}{2\pi} \int_{0}^{L_x} \int_{0}^{L_y} \frac{\sin(p\pi x/L_x)\sin(q\pi y/L_y)e^{-jkR}}{R} dx dy$$

pour une une plaque rectangulaire simplement supportée

$$w_{pq}(x, y) = a_{pq} \sin(p\pi x/L_x) \sin(q\pi y/L_y)$$

Facteur de rayonnement modal

plaque rectangulaire simplement supportée

Sans introduire tout de suite la notion de mode (th. Parseval)

$$\frac{1}{2} \iint_{s} \operatorname{Re} \{ p(x, y, 0) u_{z}^{*}(x, y, 0) \} dx \, dy = \frac{1}{2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \operatorname{Re} \{ P(k_{x}, k_{y}, 0) U_{z}^{*}(k_{x}, k_{y}, 0) \} \frac{dk_{x}}{2\pi} \frac{dk_{y}}{2\pi}$$

En exprimant $P(k_{x}, k_{y}, 0)$ et $U_{z}^{*}(k_{x}, k_{y}, 0)$

$$\Pi = \frac{\omega^{2}}{2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \operatorname{Re} \left\{ \frac{\rho_{0} ck W(k_{x}, k_{y}) W^{*}(k_{x}, k_{y})}{\sqrt{k^{2} - k_{x}^{2} - k_{y}^{2}}} \right\} \frac{dk_{x}}{2\pi} \frac{dk_{y}}{2\pi}$$
$$= \frac{\rho_{0} c \omega^{2}}{2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \operatorname{Re} \left\{ \frac{k |W(k_{x}, k_{y})|^{2}}{\sqrt{k^{2} - k_{x}^{2} - k_{y}^{2}}} \right\} \frac{dk_{x}}{2\pi} \frac{dk_{y}}{2\pi}$$

quatre bords simplement supportés $\phi_{pq}(x, y) = \phi_p(x)\phi_q(y)$

$$\phi_{pq}(x, y) = \sin\left(\frac{p\pi x}{a}\right)\sin\left(\frac{q\pi y}{b}\right)$$

Simplification : la dimension y est supposée infinie

$$\Pi = \frac{\rho_0 c \omega^2 |a_p(\omega)|^2}{2} \int_{-k}^{+k} \frac{k \Phi_p^2(k_x, k_y)}{\sqrt{k^2 - k_x^2}} \frac{dk_x}{2\pi}$$

$$TF\{ \phi_p(x) = \sin(p\pi x/a) \} \implies \Phi_p^2(k_x) = (\pi pa)^2 \left[\frac{\sin(k_x a - p\pi)/2}{(k_x a - p\pi)/2} \right]^2$$

Puissance rayonnée par une plaque

quatre bords simplement supportés

quatre bords simplement supportés

valeurs maximales du spectre quadratique de nombre d'onde

quatre bords simplement supportés Mode de bord

Edge radiator

	///
+	-
-	+
+	-
-	+
+	-
	+
+	-
mm	min
(1)	

quatre bords simplement supportés Mode de bord

quatre bords simplement supportés Mode de coin

Corner radiator

+ -

+ -

+

+

+

(3)

14

_

+ - +

+ -

_

+

quatre bords simplement supportés

Modes de coin

(1)

Facteur de rayonnement approché pour une plaque rectangulaire

Formule de Mainanik

 $\alpha = \sqrt{f/f_c}$

$$\boldsymbol{\sigma} = \begin{cases} 2 r (\lambda_c / a)^2 g_1(\alpha) + 2(1+r)(\lambda_c / a) g_2(\alpha), & f < f_c \\ \sqrt{a/\lambda_c} (1+1/\sqrt{r}), & f \approx f_c \\ (1-f_c / f)^{-1/2}, & f > f_c \end{cases}$$

$$r = a/b$$
 $\lambda_c = c/f_c$ $f_c = (c^2/2\pi)\sqrt{\rho h/D}$

$$g_{1}(\alpha) = \begin{cases} \frac{4}{\pi^{4}} \frac{1 - 2\alpha^{2}}{\alpha\sqrt{(1 - \alpha^{2})}} & f < 0.5f_{c} \\ 0 & f > 0.5f_{c} \end{cases} \qquad g_{2}(\alpha) = \frac{1}{4\pi^{2}} \frac{(1 - \alpha^{2})\ln\frac{1 + \alpha}{1 - \alpha} + 2\alpha}{(1 - \alpha^{2})^{3/2}} \end{cases}$$

Facteur de rayonnement approché pour une plaque rectangulaire

Formule de Mainanik

Méthode simplifiée de Müller et al

Méthode modale – logiciel ADNR du GAUS

Facteur de rayonnement pour une plaque finie

en acier de 1 m x 0.8 m (amortissement 0.2%), force en 0.35 m x 0.35 m

Expansion modale de 50 Ω Radiation efficiency (dB) $-\mathbf{G}$ -19 -28 2 mm -38 50 2840 5630 8420 11210 14000 Frequency (Hz)

> Müller fréquence critique : 5605 Hz fréquence 1 : 12.5 Hz - L1 = -11.3 dB

Méthode modale – logiciel ADNR du GAUS

Facteur de rayonnement pour une plaque finie en acier de 1 m x 0.8 m (amortissement 0.2%), force en 0.35 m x 0.35 m

Facteur de rayonnement pour une plaque finie

Influence de l'épaisseur $h_2 = 2h_1$

Facteur de rayonnement pour une plaque finie

Influence de la surface $S_2 = 2S_1$

Facteur de rayonnement pour une plaque raidie

Facteur de rayonnement excitation mécaniques / excitation acoustique

(d'après Macadam, 1976)

Facteur de rayonnement excitation mécaniques / excitation acoustique

(d'après von Venzke)

Indice d'affaiblissement des plaques raidies

Méthode modale

Plaque bafflée avec des conditions aux limites arbitraires

(méthode variationnelle et méthode de Rayleigh-Ritz, Degeorges 1988, Berry et al 1990)

Vacuum z < 0

Influence des conditions aux limites

résultats par mode

---- encastrée

— simplement supportée

acier $0.55 \text{ m} \times 0.45 \text{ m}$ (r = 1.2),épaisseur 1 mm, fréquence critique 12 kHz

Le facteur de rayonnement d'une plaque encastrée est pratiquement le **double** de celui d'une plaque simplement supportée

Berry, Guyader, Nicolas, JASA 1990

Influence des conditions aux limites

résultats globaux

acier 0.55 m x 0.45 m (r = 1.2),épaisseur 1 mm,

fréquence critique 12 kHz

amortissement 1%

Force ponctuelle au centre

Influence des conditions aux limites

Plaque libre partiellement encastrée

acier 0.55 m x 0.45 m (r = 1.2),épaisseur 1 mm,

fréquence critique 12 kHz

amortissement 1%

Force ponctuelle au centre

Berry, Guyader, Nicolas, JASA 1990

Influence du baffle

- bafflée

---- non bafflée

Atalla, Nicolas, Gauthier JASA 1996

Influence de l'écoulement du fluide

Frampton, JASA 2003

Influence de l'écoulement du fluide

Frampton, JASA 2003