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Digital holographic reconstruction of large objects
using a convolution approach and
adjustable magnification
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We present a numerical method for reconstructing large objects using a convolution method with an adjust-
able magnification. The method is based on the image locations and magnification relations of holography
when the illuminating beam is a spherical wavefront. A modified version of the angular spectrum transfer
function is proposed that allows the filtering in the spatial frequency spectrum. Experimental results con-

firm the suitability of the proposed method. © 2009 Optical Society of America
OCIS codes: 090.0090, 090.1995, 090.1760, 100.2000, 100.3010.

In digital holography the numerical reconstruction of
the object encoded using optical interferences is usu-
ally based on the discrete version of the Fresnel
transform, on the computation of the convolution for-
mula of diffraction [1-3], or on the angular spectrum
method [4,5]. The discrete Fresnel transform is very
well adapted to large objects, i.e., objects with lateral
dimensions quite greater than that of the recording
area. With this method, the sampling pitch in the re-
constructed plane depends on the wavelength of the
light used for the recording, on the diffraction dis-
tance, and on the number of data points used for the
computation [1-3]. However, such an algorithm is not
suitable for digital color holography, except if one
uses a zero-padding adapted to the wavelength [6].
Objects with dimensions on the order of the recording
area can be reconstructed by either the Fresnel
transform or the convolution approach. With convolu-
tion, the field of view conserves the same physical di-
mension as that of the recording. To extend the size
of the reconstructed field, Kreis et al. [1] and
Yamaguchi et al. [7] used a zero-padding of the algo-
rithm in the convolution method. This approach can
be intuitively thought, since the reconstruction hori-
zon obtained by the convolution approach is related
to the one of the sensors. So increasing the size of the
reconstruction horizon should increase the size of the
reconstructed field and then the size of the object. It
follows that the necessary number of data points is
simply given by the ratio L=AA,/p, (for the x direc-
tion, for example, p,, pixel pitch of the sensor; AA,,
size of the object in the x direction, similar relation in
the y direction). For example, if AA,=AA, =60 mm
and p,=p,=5 um, the algorithm needs (L,K)
=(12,000,12,000) data points. However, the computa-
tion time and the memory used for such processing
may exceed the one of usual personal computers. In
2004, Zhang et al. [8] proposed an algorithm based on
a double Fresnel transform allowing the adjustment
of the side length of the field of view. Demonstration
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was performed with an object with moderated size
with a field of view of 10 mm X 10 mm. This Letter
proposes an alternative algorithm based on the con-
volution approach, needing only two fast Fourier
transform computations and allowing the reconstruc-
tion of a large object size variety. The principle of the
algorithm is a fruitful mixing between the zero-
padding strategy and the fundamental properties of
holography. Consider the conjugation relations of ho-
lography established when the reconstructing wave
is a spherical wavefront [9]. Note that Yamaguchi et
al. theoretically described the use of a spherical wave
as an illuminating wave but convenient algorithm,
and experimental results were not described [10].
The reconstructing wavefront can be in the form of a
Rayleigh—Sommerfeld spherical wave described in
Eq. (1) (for the coordinate chart, see Fig. 1):
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where sgn is the sign function, i= \s'—_l, R, is the cur-
vature radius, and \ is the wavelength. The conjuga-
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Fig. 1. (Color online) Experimental setup (dy=1500 mm,
x9=53.6 mm, yy=-51.9 mm).
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tion relations of holography ([9], p. 316) indicate that
the position of the reconstructed object is given by
1/dp=-1/dy+1/R,, where d is the distance between
the recording area and the object (d,>0). Further-
more the transversal magnification between the re-
constructed object and the real one is given by vy
=-dg/d,. Since the convolution approach imposes the
size of the reconstructed horizon, consider that it is
(Lp,,Kp,). The transversal magnification y must be
chosen according to the ratio Lp,/AA, (or Kp,/AA,): if
greater than Lp,/AA, then the object will not fully lie
in the reconstructed area, if smaller than Lp,/AA,,
the object will be fully included in the field of view
(and, respectively, for y). Consequently, y sets the
useful values for the reconstructing distance dz and
the curvature radius of the spherical wavefront ac-
cording to R.=vydy/(y—1). In a convolution strategy,
the change in the reconstructing distance (dg # —d,)
modifies the useful spatial frequency bandwidth of
the transfer function, which is then given by
(Au,Av)=(Lp,/\dg,Kp,/N\dg) [11]. The transfer func-
tion for the numerical reconstruction can be chosen
to be the angular spectrum transfer function [3,4,9]
for which the Shannon theorem requires a sampling
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pitch along the frequency axis given by (a similar re-
lation holds in the perpendicular direction for &v)

\/1 - N2Au?/4 1
ou < = . (2)
)\dRAu )\dRAu

Since the spatial frequency spectrum is computed
with KXL data points, the Shannon theorem is
fulfilled in the useful bandwidth, because the FFT
computation 1is automatically setting (du,dv)
=(1/Lp,,1/Kp,). This also means that the Shannon
theorem is not fulfilled for the full spatial bandwidth
(1/p, X 1/p,). Furthermore, in digital off-axis holog-
raphy, the reference wave includes a spatial biased
phase whose spatial frequencies are (u(,v,) and that
localizes the object in the reconstructed space and in
the Fourier space. Thus the transfer function must
be adapted in order to first fulfill the Shannon theo-
rem in the frequency space and last to take into ac-
count that the object spectrum is localized at (uy,v).
So we chose for the transfer function a modified
version of the angular spectrum transfer function
according to the following equation:

ﬁ(uyv’dR) = {0

The use of a spherical wave as an illuminating wave
modifies the width of the zero-order diffraction,
which is then (Np,/\R.,Mp,/\R,). Ideally, the algo-
rithm must work with values of the parameters such
that there is no overlapping between the useful band-
width and the zero-order bandwidth. If there is over-
lapping, the reconstructed field will include a part of
the parasitic zero-order diffraction. A sufficient condi-
tion to avoid overlapping is given by

Np, Lp,
+
2\R.|  2\|dg|

<uy|. (4)

A similar relation holds for the vertical direction. In
this Letter, the aim is to reconstruct objects with a
size larger than the recording area. Thus the magni-
fication must be less than 1 and must be chosen posi-
tive if one wants to see the object sitting up straight.
This leads to |y-1|=1-v and, from Eq. (4), Eq. (5)
gives the boundary values for the magnification,

(L+N)p, Lp,

<y< . 5

A similar relation holds for the vertical direction.

To illustrate the potentialities of this strategy, con-
sider the optical setup described in Fig. 1, which is
based on a Mach—Zehnder interferometer, a continu-
ous green laser (A\=532 nm), and a CCD camera
(PCO Pixel Fly, (M,N)=(1024,1360) pixels with

exp[2i md /N1 = N2 (u — ug)? = N2(v —vo)?], if |u—uo| < Lp,/Ndp, [v-vo| < Kp,/\dg

(3)

elsewhere

|

pitches p,=p,=4.65 um). The object under consider-
ation is the bronze medal of the half marathon
“20 km de Paris 2000,” which is 60 mm in diameter.
The distance for the recording is set to dy=1500 mm,
and the object is translated perpendicularly
to the optical axis of quantities (x;=53.6 mm,
yo=-51.9 mm) thus producing off-axis
spatial frequencies (wg,vg)=(xg/Ndg,yo/Nd)
~(67.2 mm™',-65.1 mm™!) [11]. As indicated previ-
ously, the magnification depends on the size of the re-
constructed area. If the reconstructing area is the
same as the recording area then (K,L)=(M,N), the
magnification must be chosen to be y=0.0794, the
curvature radius to be R,=-128.66 mm, and the re-
construction distance must be set to dp=-118.5 mm.
However Eq. (5) leads to 0.0976 < y<<0.0794, which is
incompatible, so this means that the reconstructed
field will be perturbed by the zero-order diffraction.
Consequently, a zero-order free reconstruction with
(K,L)=(M,N) is impossible. By using zero-padding to
extend the reconstruction horizon to (K,L)
=(2048,2048)> (M ,N) data points corresponding
to about twice that of the recording sensor,
Eq. (56) leads to 0.1395<y<0.1587. So upper choice
v=0.158 appears to be a good compromise. This leads
to curvature radius R,=-281.47 mm and reconstruc-
tion distance dp=-237 mm. Note that lower choice
v=0.140 is also possible, leading to R,=-244.18 mm,
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dr=-210 mm, and the object will be slightly smaller
than the reconstructed area but there will be no per-
turbation in the field of view. If one chooses a smaller
value than 7=0.1395, then the perturbation due
to the zero order will appear in the field of view. For
example, with y=0.118, R,=-201.64 mm and dp
=-171.75 mm, the reconstructed object is smaller
than the reconstruction horizon, and perturbation
will lie in the field of view. Figure 2 shows the spatial
frequency spectrum obtained for the hologram multi-
plied by the spherical wavefront, for the four cases
presented above named cases a, b, ¢, d, correspond-
ing to 7¥={0.079;0.158;0.140;0.118}. The white
square line corresponds to the useful bandwidth of
the angular spectrum transfer function, and the
white cross is localized at spectral coordinate (u,v).
The wuseful bandwidth occupies Au/du X Av/dv
=L%p */\dp X K?p */\dp ={634,719,811,992} X {359,
719,811,992} data points in the spectrum for cases
{a,b,c,d}, respectively. Figure 3 shows the object re-
constructed with the parameters of the four cases a,
b, ¢, d. For cases b and ¢ the object is fully lying in
the reconstructed area, thus validating the proposed
approach. The computation time is 3.7 s for K=1024,
L=1360, and it is 9.2s for K=L=2048 with
MATLAB5.3 on a computer equipped with a Pentium
2.33 GHz processor and 2 GoRAM. Note that the
choice of y does not influence the intrinsic resolution
of the reconstructed image: indeed the method uses
diffraction calculation mixed with zero-padding and,
as mentioned in [11], the intrinsic image resolution
depends only on the recording conditions. As dis-
cussed, a perturbation is included in cases a and d,
which is provided by the zero-order diffraction. In-
deed, the spatial bandwidth due to the spherical
wave is more extended than in cases a, d, because the
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Fig. 2. (Color online) Spatial frequency spectrum for (a)
y=0.079, (b) y=0.158, (¢) y=0.140, and (d) y=0.118.
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Fig. 3. Reconstructed field of view for (a) y=0.079, K=M
=1024, L=N=1360, (b) y=0.158, K=L=2048, (c) y=0.140,
K=L=2048, and (d) y=0.118, K=L=2048.

curvature radius is decreased and Eq. (4) is not ful-
filled. Figure 2 clearly shows overlapping between
useful and parasitic bandwidth. Whereas in cases b,
¢, the filtering window around spatial frequencies
(ug,v0) [Eq. (3)] does not include any contribution of
the zero-order diffraction; thus Eq. (4) is fulfilled.

In conclusion, this Letter presents a numerical
method for reconstructing a large object using a con-
volution method with an adjustable magnification.
The method is based on the image locations and mag-
nification relations of holography and on a spectral
filtering in the Fourier space. The filtering is realized
using a modified version of the angular spectrum
transfer function according to the necessary useful
bandwidth for the reconstruction horizon. Experi-
mental results show very good agreement with the
theoretical analysis.
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